Efficient Adsorption of Ionic Liquids in Water Using -SO3H-Functionalized MIL-101(Cr): Adsorption Behavior and Mechanism

被引:0
|
作者
Zhang, Ling [1 ,2 ]
Ma, Shuai [1 ]
Hu, Sumei [1 ]
Qu, Qiao [1 ]
Deng, Chengxun [1 ,2 ]
Xu, Zhaoyi [3 ]
Liu, Xiaowei [1 ,2 ]
机构
[1] Hefei Univ, Sch Biol Food & Environm, Hefei 230601, Peoples R China
[2] Int Sino German Joint Res Ctr Biomass Anhui Prov, Hefei 230601, Peoples R China
[3] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Jiangsu Key Lab Vehicle Emiss Control, Nanjing 210023, Peoples R China
关键词
METAL-ORGANIC FRAMEWORKS; 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; REMOVAL; CARBON; EFFLUENTS; ADSORBENT; ISOTHERM; PHASE; PH;
D O I
10.1021/acs.langmuir.4c03790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increasing application of ionic liquids (ILs) in industrial areas, the removal of ILs from aqueous media has attracted considerable attention due to their potential environmental impact. In this study, we investigated the adsorption behavior and removal mechanism of ILs in water using the metal-organic framework material MIL-101(Cr) and its sulfonated derivative MIL-101(Cr)-SO3H. It was observed that MIL-101(Cr)-SO3H exhibited notably elevated adsorption capacity (1.19 mmol/g) and rapid adsorption kinetics (1.66 g/mmol<middle dot>min-1) for [C4mim]Cl in comparison to its unmodified form, underscoring the impact of strategic sulfonation on enhancing adsorption. Also, MIL-101(Cr)-SO3H showcased the effective removal of various ILs featuring diverse cations and varying anions, highlighting its broad-spectrum capture capacities. The adsorption process is less influenced by the type of cations and anions. In contrast, enhanced adsorption of [C16mim]Cl by MIL-101(Cr)-SO3H demonstrated that the length of the alkyl chain of ILs' cation exerted a more significant influence on the adsorption than the type of head and tail group. This enhancement is attributed to a synergistic interplay of pore filling, electrostatic interactions, hydrophobic interactions, and micelle enrichment. These findings provided valuable insights into optimizing the design of metal-organic framework materials for the efficient removal of IL pollutants.
引用
收藏
页码:27481 / 27491
页数:11
相关论文
共 50 条
  • [1] Embedding of SO3H-functionalized ionic liquids in mesoporous MIL-101 (Cr) through polyoxometalate bridging: A robust heterogeneous catalyst for biodiesel production
    Chen, Chong
    Wang, Fengqing
    Li, Qiuhao
    Wang, Yunlong
    Ma, Jun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 648
  • [2] Synthesis of MIL-101(Cr) and its water adsorption performance
    Zhao, Huizhong
    Li, Qianwen
    Wang, Zhaoyang
    Wu, Tianhao
    Zhang, Min
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 297 (297)
  • [3] Adsorption behavior and adsorption mechanism of glyphosate in water by amino-MIL-101(Fe)
    Liu, Ruijie
    Xie, Yinde
    Cui, Kaifei
    Xie, Jia
    Zhang, Yuxia
    Huang, Yingping
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 161
  • [4] Experimental investigation of water adsorption in MIL-101 (Cr)-coated microchannels
    Ege, Faraz
    Pahinkar, Darshan G.
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [5] MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination
    Elsayed, Eman
    Anderson, Paul
    AL-Dadah, Raya
    Mahmoud, Saad
    Elsayed, Ahmed
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 277 : 123 - 132
  • [6] Synthesis of amino acid modified MIL-101 and efficient uranium adsorption from water
    Zhang, Gege
    Fang, Yueguang
    Wang, Yudan
    Liu, Lijia
    Mei, Douchao
    Ma, Fuqiu
    Meng, Yujiang
    Dong, Hongxing
    Zhang, Chunhong
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 349
  • [7] Adsorption Behavior and Mechanism of Sulfonamide Antibiotics in Aqueous Solution on a Novel MIL-101(Cr)@GO Composite
    Jia, Xiuna
    Li, Sijia
    Wang, Yudan
    Wang, Ting
    Hou, Xiaohong
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (03) : 1265 - 1274
  • [8] Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr)
    Ryu, Seongchul
    Fonseka, Charith
    Naidu, Gayathri
    Loganathan, Paripurnanda
    Moon, Hee
    Kandasamy, Jaya
    Vigneswaran, Saravanamuthu
    CHEMOSPHERE, 2021, 281
  • [9] Optimizations and docking simulation study for metolachlor adsorption from water onto MIL-101(Cr) metal-organic framework
    Isiyaka, H. A.
    Jumbri, K.
    Sambudi, N. S.
    Zango, Z. U.
    Abdullah, N. A. F. B.
    Saad, B.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (01) : 277 - 292
  • [10] Molecular Simulation for CO2 Adsorption in Amine-Functionalized MIL-101(Cr)
    Wang Zhi-Jing
    Wang Jun-Chao
    Zhao Xing-Le
    Ma Zheng-Fei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (11) : 1966 - 1974