Federated Deep Reinforcement Learning for Prediction-Based Network Slice Mobility in 6G Mobile Networks

被引:3
|
作者
Ming, Zhao [1 ]
Yu, Hao [2 ]
Taleb, Tarik [3 ]
机构
[1] Univ Oulu, Ctr Wireless Commun CWC, Oulu 90570, Finland
[2] ICTFICIAL Oy, Espoo 02130, Finland
[3] Ruhr Univ Bochum, D-44801 Bochum, Germany
关键词
Resource management; Decision making; 6G mobile communication; Dynamic scheduling; Training; Quality of service; Long short term memory; Prediction-based network slice mobility; incomplete observation; deep reinforcement learning; ENERGY; MANAGEMENT;
D O I
10.1109/TMC.2024.3404125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network slices are generally coupled with services and face service continuity/unavailability concerns due to the high mobility and dynamic requests from users. Network slice mobility (NSM), which considers user mobility, service migration, and resource allocation from a holistic view, is witnessed as a key technology in enabling network slices to respond quickly to service degradation. Existing studies on NSM either ignored the trigger detection before NSM decision-making or didn't consider the prediction of future system information to improve the NSM performance, and the training of deep reinforcement learning (DRL) agents also faces challenges with incomplete observations. To cope with these challenges, we consider that network slices migrate periodically and utilize the prediction of system information to assist NSM decision-making. The periodical NSM problem is further transformed into a Markov decision process, and we creatively propose a prediction-based federated DRL framework to solve it. Particularly, the learning processes of the prediction model and DRL agents are performed in a federated learning paradigm. Based on extensive experiments, simulation results demonstrate that the proposed scheme outperforms the considered baseline schemes in improving long-term profit, reducing communication overhead, and saving transmission time.
引用
收藏
页码:11937 / 11953
页数:17
相关论文
共 50 条
  • [31] Fast Best Beam Prediction and Overhead Reduction for 6G Networks: A Deep Learning Approach
    Jalali, Jalal
    Roa, Juan
    Song, Yifei
    Zhao, Renjian
    Sheen, Baoling
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [32] Joint Sensing and Communications for Deep Reinforcement Learning-based Beam Management in 6G
    Yao, Yujie
    Zhou, Hao
    Erol-Kantarci, Melike
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5019 - 5024
  • [33] AI-Based E2E Resilient and Proactive Resource Management in Slice-Enabled 6G Networks
    Nouruzi, Ali
    Mokari, Nader
    Azmi, Paeiz
    Jorswieck, Eduard A.
    Erol-Kantarci, Melike
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2025, 12 (02): : 1311 - 1328
  • [34] Collective reinforcement learning based resource allocation for digital twin service in 6G networks
    Huang, Zhongwei
    Li, Dagang
    Cai, Jun
    Lu, Hua
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 217
  • [35] Optimizing Multi-Tier Cellular Networks With Deep Learning for 6G Consumer Electronics Communications
    Ali, Sher
    Hassan, Muhammad Abul
    Granelli, Fabrizio
    Wang, Wei
    Sampedro, Gabriel Avelino
    Hejaili, Abdullah Al
    Bouazzi, Imen
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 627 - 634
  • [36] Federated Learning for Intelligent Transmission with Space-Air-Ground Integrated Network toward 6G
    Tang, Fengxiao
    Wen, Cong
    Chen, Xuehan
    Kato, Nei
    IEEE NETWORK, 2023, 37 (02): : 198 - 204
  • [37] Deep Reinforcement Learning-Based Network Slicing for Beyond 5G
    Suh, Kyungjoo
    Kim, Sunwoo
    Ahn, Yongjun
    Kim, Seungnyun
    Ju, Hyungyu
    Shim, Byonghyo
    IEEE ACCESS, 2022, 10 : 7384 - 7395
  • [38] Improving Scalability of 6G Network Automation with Distributed Deep Q-Networks
    Majumdar, Sayantini
    Goratti, Leonardo
    Trivisonno, Riccardo
    Carle, Georg
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1265 - 1270
  • [39] Mitigating Jamming Attack in 5G Heterogeneous Networks: A Federated Deep Reinforcement Learning Approach
    Sharma, Himanshu
    Kumar, Neeraj
    Tekchandani, Rajkumar
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 2439 - 2452
  • [40] Scaling UPF Instances in 5G/6G Core With Deep Reinforcement Learning
    Nguyen, Hai T.
    Tien Van Do
    Rotter, Csaba
    IEEE ACCESS, 2021, 9 : 165892 - 165906