Federated Deep Reinforcement Learning for Prediction-Based Network Slice Mobility in 6G Mobile Networks

被引:3
|
作者
Ming, Zhao [1 ]
Yu, Hao [2 ]
Taleb, Tarik [3 ]
机构
[1] Univ Oulu, Ctr Wireless Commun CWC, Oulu 90570, Finland
[2] ICTFICIAL Oy, Espoo 02130, Finland
[3] Ruhr Univ Bochum, D-44801 Bochum, Germany
关键词
Resource management; Decision making; 6G mobile communication; Dynamic scheduling; Training; Quality of service; Long short term memory; Prediction-based network slice mobility; incomplete observation; deep reinforcement learning; ENERGY; MANAGEMENT;
D O I
10.1109/TMC.2024.3404125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network slices are generally coupled with services and face service continuity/unavailability concerns due to the high mobility and dynamic requests from users. Network slice mobility (NSM), which considers user mobility, service migration, and resource allocation from a holistic view, is witnessed as a key technology in enabling network slices to respond quickly to service degradation. Existing studies on NSM either ignored the trigger detection before NSM decision-making or didn't consider the prediction of future system information to improve the NSM performance, and the training of deep reinforcement learning (DRL) agents also faces challenges with incomplete observations. To cope with these challenges, we consider that network slices migrate periodically and utilize the prediction of system information to assist NSM decision-making. The periodical NSM problem is further transformed into a Markov decision process, and we creatively propose a prediction-based federated DRL framework to solve it. Particularly, the learning processes of the prediction model and DRL agents are performed in a federated learning paradigm. Based on extensive experiments, simulation results demonstrate that the proposed scheme outperforms the considered baseline schemes in improving long-term profit, reducing communication overhead, and saving transmission time.
引用
收藏
页码:11937 / 11953
页数:17
相关论文
共 50 条
  • [21] Joint optimization of layering and power allocation for scalable VR video in 6G networks based on Deep Reinforcement Learning
    Yang, Junchao
    Zhang, Hui
    Jiao, Wenxin
    Guo, Zhiwei
    Alqahtani, Fayez
    Tolba, Amr
    Shen, Yu
    JOURNAL OF SYSTEMS ARCHITECTURE, 2025, 162
  • [22] Efficient End-Edge-Cloud Task Offloading in 6G Networks Based on Multiagent Deep Reinforcement Learning
    She, Hao
    Yan, Lixing
    Guo, Yongan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 20260 - 20270
  • [23] Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges, and Future Directions
    Hafi, Houda
    Brik, Bouziane
    Frangoudis, Pantelis A.
    Ksentini, Adlen
    Bagaa, Miloud
    IEEE ACCESS, 2024, 12 : 9890 - 9930
  • [24] Resource Allocation in Mobility-Aware Federated Learning Networks: A Deep Reinforcement Learning Approach
    Nguyen, Huy T.
    Luong, Nguyen Cong
    Zhao, Jun
    Yuen, Chau
    Niyato, Dusit
    2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [25] Federated Reinforcement Learning-Based Resource Allocation for D2D-Aided Digital Twin Edge Networks in 6G Industrial IoT
    Guo, Qi
    Tang, Fengxiao
    Kato, Nei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 7228 - 7236
  • [26] Dynamic Neural Network-Based Resource Management for Mobile Edge Computing in 6G Networks
    Ma, Longfei
    Cheng, Nan
    Zhou, Conghao
    Wang, Xiucheng
    Lu, Ning
    Zhang, Ning
    Aldubaikhy, Khalid
    Alqasir, Abdullah
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (03) : 953 - 967
  • [27] Intelligent Resource Allocation Algorithm for 6G Multi-tenant Network Slicing Based on Deep Reinforcement Learning
    Guan W.-Q.
    Zhang H.-J.
    Lu Z.-M.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2020, 43 (06): : 132 - 139
  • [28] Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G
    Mekrache, Abdelkader
    Bradai, Abbas
    Moulay, Emmanuel
    Dawaliby, Samir
    VEHICULAR COMMUNICATIONS, 2022, 33
  • [29] Seamless and Intelligent Resource Allocation in 6G Maritime Networks Framework via Deep Reinforcement Learning
    Hassan, Sheikh Salman
    Park, Seong-Bae
    Huh, Eui-Nam
    Hong, Choong Seon
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 505 - 510
  • [30] Slice Reconfiguration Based on Demand Prediction with Dueling Deep Reinforcement Learning
    Guan, Wanqing
    Zhang, Haijun
    Leung, Victor C. M.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,