Delta doping and positioning effects of type II GaSb quantum dots in GaAs solar cell

被引:2
作者
Asirvatham, Juanita Saroj James [1 ]
Fujita, Hiromi [2 ]
Fernández-Delgado, N. [3 ]
Herrera, M. [3 ]
Molina, S.I. [3 ]
Marshall, Andrew R. J. [1 ]
Krier, Anthony [1 ]
机构
[1] Physics Department, Lancaster University, Lancaster
[2] Magnetic Sensors Process Technology and Development Department, Asahi-Kasei Microdevices, Fuji, 416-8501, Shizuoka
[3] Departamento de Ciencia de los Materiales e I.M. y Q.I., Instituto de Microscopía Electrónica y Materiales, Puerto Real, 11510, Cádiz
来源
Energy Materials: Materials Science and Engineering for Energy Systems | 2015年 / 10卷 / 04期
关键词
Delta doping; Gallium antimonide; Molecular beam epitaxy; Open-circuit voltage (V[!sub]oc[!/sub]); Photocurrent; Photoresponse; Quantum dots; Solar cells;
D O I
10.1080/14328917.2015.1115807
中图分类号
学科分类号
摘要
GaSb quantum dot (QD) solar cell structures were grown by molecular beam epitaxy on GaAs substrates. We investigate the reduction in open-circuit voltage and study the influence of the location of QD layers and their delta doping within the solar cell. Devices with 5 layers of delta-doped QDs placed in the intrinsic, n- and p-regions of a GaAs solar cell are experimentally investigated, and the deduced values of Jsc, Voc, fill factor, efficiency (η) are compared. A trade-off is needed to minimize the Voc degradation while maximizing the short circuit current density (Jsc) enhancement due to sub-bandgap absorption. The voltage recovery is attributed to the removal of the QDs from the high-field region which reduces SRH recombination. The devices with p- or n-doped QDs placed in the flat band potential (p- or n-region) show a recovery in Jsc and Voc compared to devices with delta-doped QDs placed in the depletion region. However, there is less photocurrent arising from the absorption of sub-band gap photons. Furthermore, the long wavelength photoresponse of the n-doped QDs placed in the n-region shows a slight improvement compared to the control cell. The approach of placing QDs in the n-region of the solar cell instead of the depletion region is a possible route towards increasing the conversion efficiency of QD solar cells. © W. S. Maney & Son Ltd. 2016.
引用
收藏
页码:512 / 516
页数:4
相关论文
共 7 条
  • [1] Carrington P.J., Mahajumi A.S., Wagener M.C., Botha J.R., Zhuang Q., Krier A., Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells, Physica B, 407, pp. 1493-1496, (2012)
  • [2] Kechiantz A., Afanasev A., Lazzari J.-L., Impact of spatial separation of type-II GaSb quantum dots from the depletion region on the conversion efficiency limit of GaAs solar cells, Prog. Photovolt: Res. Appl., 23, pp. 1003-1016, (2015)
  • [3] Hwang J., Martin A.J., Lee K., Forrest S., Millunchick J., Phillips J., Preserving voltage and long wavelength photoresponse in GaSb/GaAs quantum dot solar cells, 39th IEEE Photovoltaic Specialists Conference Tampa, (2013)
  • [4] Polly S.J., Forbes D.V., Driscoll K.M., Hubbard S.M., Delta doping effects on quantum dot solar cells, IEEE J. Photovoltaics, 4, pp. 1079-1085, (2014)
  • [5] Zhou D., Vullum P.E., Sharma G., Thomassen S.F., Holmestad R., Reenaas T.W., Fimland B.O., Positioning effects on quantum dot solar cells grown by molecular beam epitaxy, Appl. Phys. Lett, 96, (2010)
  • [6] Kim Y., Ban K.-Y., Kuciauskas D., Dippo P.C., Honsberg C.B., Impact of delta-doping position on photoluminescence in type-II InAs/ GaAsSb quantum dots, Semicond. Sci. Technol, 30, (2015)
  • [7] Sablon K., Little J., Mitin V., Sergeev A., Vagidov N., Reinhardt K., Strong enhancement of solar cell efficiency due to quantum dots with built-in charge, Nano Lett., 11, pp. 2311-2317, (2011)