Multi-step forecasting of wind speed using IOWA operator

被引:0
|
作者
机构
[1] Wang, Dongfeng
[2] Wang, Fuqiang
[3] Han, Pu
来源
Wang, D. (wangdongfeng@ncepubd.edu.cn) | 1600年 / Advanced Institute of Convergence Information Technology卷 / 04期
关键词
Speed - Elman neural networks - Forecasting - Support vector machines;
D O I
10.4156/ijact.vol4.issue14.16
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Wind Speed Multi-Step Forecasting Using High- Resolution and Multi-Objective Ensemble Model With Error Correction
    Zhang, Shengcai
    Zhu, Changsheng
    Guo, Xiuting
    IEEE ACCESS, 2024, 12 : 73141 - 73159
  • [22] Multi-step Ahead Wind Forecasting Using Nonlinear Autoregressive Neural Networks
    Ahmed, Adil
    Khalid, Muhammad
    SUSTAINABILITY IN ENERGY AND BUILDINGS 2017, 2017, 134 : 192 - 204
  • [23] Multi-step wind speed forecasting based on numerical simulations and an optimized stochastic ensemble method
    Zhao, Jing
    Wang, Jianzhou
    Guo, Zhenhai
    Guo, Yanling
    Lin, Wantao
    Lin, Yihua
    APPLIED ENERGY, 2019, 255
  • [24] Intelligent Neural Learning Models for Multi-step Wind Speed Forecasting in Renewable Energy Applications
    Deepa, S. N.
    Banerjee, Abhik
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (03) : 881 - 900
  • [25] Intelligent Neural Learning Models for Multi-step Wind Speed Forecasting in Renewable Energy Applications
    S. N. Deepa
    Abhik Banerjee
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 881 - 900
  • [26] Domain-informed multi-step wind speed forecasting: evaluating extreme wind conditions and seasonal variations
    Kishore, S. R. Nandha
    Mandal, Subhojit
    Thakur, Mainak
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [27] Research and application of a combined model based on multi objective optimization for multi-step ahead wind speed forecasting
    Wang, Jianzhou
    Heng, Jiani
    Xiao, Liye
    Wang, Chen
    ENERGY, 2017, 125 : 591 - 613
  • [28] Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer
    Ma, Ruwei
    Zhu, Zhexuan
    Li, Chunxiang
    Cao, Liyuan
    WIND AND STRUCTURES, 2024, 38 (06) : 461 - 475
  • [29] Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning
    Galarza-Chavez, Angel A.
    Martinez-Rodriguez, Jose L.
    Dominguez-Cruz, Rene Fernando
    Lopez-Garza, Esmeralda
    Rios-Alvarado, Ana B.
    ENERGY REPORTS, 2025, 13 : 1 - 15
  • [30] Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction
    Kenmoe, Germaine Djuidje
    Fotso, Hervice Romeo Fogno
    Kaze, Claude Vidal Aloyem
    WIND ENGINEERING, 2022, 46 (03) : 780 - 795