CataEx: A multi-task export tool for the Google Earth Engine data catalog

被引:0
|
作者
Domej, Gisela [1 ]
Pluta, Kacper [2 ]
Ewertowski, Marek [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Geoecol & Geoinformat, Fac Geog & Geol Sci, Dept Geomorphol, Ul B Krygowskiego 10, PL-61680 Poznan, Poland
[2] Univ Gustave Eiffel, ESIEE Paris, Cite Descartes, 2 Bd Blaise Pascal, F-93160 Noisy Le Grand, France
关键词
Google Earth Engine; Satellite imagery; Landsat; Sentinel; Cloud masking; !text type='Java']Java[!/text]Script; GIS; Remote sensing; DIFFERENCE WATER INDEX; BIG DATA APPLICATIONS; VEGETATION INDEX; SEASONAL SEPARATION; LANDSAT IMAGERY; NATURAL HAZARDS; TIME-SERIES; SNOW COVER; POPULATION; DYNAMICS;
D O I
10.1016/j.envsoft.2024.106227
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Satellite imagery is provided by different missions such as ASTER, MODIS, Sentinel, Landsat, IKONOS, GeoEye, SPOT, WorldView, Ple<acute accent>aides, or RapidEye. One of the major encumbrances is the digital volume that satellite imagery claims during download, storage, and processing. This inconvenience has been overcome since 2010 by the Google Earth Engine, a cloud-based platform for global geospatial analysis dedicated to users who are not necessarily remote sensing specialists. However, compatibility with traditional desktop or web-based GIS software remains tricky as bringing satellite imagery from the Google Earth Engine to another software requires a coded export via JavaScript or Python. We present the multi-functional code tool CataEx in JavaScript to exemplify several essential types of computations (i.e., filtering of image collections, cloud masking, index and histogram generation, and layer creation) before exporting images as GeoTIFFs. CataEx is kept deliberately simple without much "sophisticated" code language to allow JavaScript beginners to get familiar with basic coding concepts and develop their own scripts.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
    Amani, Meisam
    Ghorbanian, Arsalan
    Ahmadi, Seyed Ali
    Kakooei, Mohammad
    Moghimi, Armin
    Mirmazloumi, S. Mohammad
    Moghaddam, Sayyed Hamed Alizadeh
    Mahdavi, Sahel
    Ghahremanloo, Masoud
    Parsian, Saeid
    Wu, Qiusheng
    Brisco, Brian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5326 - 5350
  • [42] A Random Forest-Based Multi-Index Classification (RaFMIC) Approach to Mapping Three-Decadal Inundation Dynamics in Dryland Wetlands Using Google Earth Engine
    Senanayake, Indishe P.
    Yeo, In-Young
    Kuczera, George A.
    REMOTE SENSING, 2023, 15 (05)
  • [43] A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics
    Abdelkader, Mohamed
    Mendez, Jorge Humberto Bravo
    Temimi, Marouane
    Brown, Dana R. N.
    Spellman, Katie V.
    Arp, Christopher D.
    Bondurant, Allen
    Kohl, Holli
    REMOTE SENSING, 2024, 16 (08)
  • [44] Geolokit: An interactive tool for visualising and exploring geoscientific data in Google Earth
    Triantafyllou, Antoine
    Watlet, Arnaud
    Bastin, Christophe
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 62 : 39 - 46
  • [45] A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing
    Amani, Meisam
    Brisco, Brian
    Afshar, Majid
    Mirmazloumi, S. Mohammad
    Mahdavi, Sahel
    Mirzadeh, Sayyed Mohammad Javad
    Huang, Weimin
    Granger, Jean
    BIG EARTH DATA, 2019, 3 (04) : 378 - 394
  • [46] Google Earth Engine Sentinel-3 OLCI Level-1 Dataset Deviates from the Original Data: Causes and Consequences
    Prikaziuk, Egor
    Yang, Peiqi
    van der Tol, Christiaan
    REMOTE SENSING, 2021, 13 (06)
  • [47] Changes in Water Surface Area during 1989-2017 in the Huai River Basin using Landsat Data and Google Earth Engine
    Xia, Haoming
    Zhao, Jinyu
    Qin, Yaochen
    Yang, Jia
    Cui, Yaoping
    Song, Hongquan
    Ma, Liqun
    Jin, Ning
    Meng, Qingmin
    REMOTE SENSING, 2019, 11 (15)
  • [48] Identifying the optimal phenological period for discriminating subtropical fruit tree crops using multi-temporal Sentinel-2 data and Google Earth
    Chabalala, Yingisani
    Adam, Elhadi
    Ali, Khalid Adem
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2023, 12 (02): : 262 - 283
  • [49] A method for robust estimation of snow seasonality metrics from Landsat and Sentinel-2 time series data over Atlas Mountains scale using Google Earth Engine
    El Jabiri, Youssra
    Boudhar, Abdelghani
    Htitiou, Abdelaziz
    Sproles, Eric A.
    Bousbaa, Mostafa
    Bouamri, Hafsa
    Chehbouni, Abdelghani
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [50] Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands
    Hardy, Andy
    Oakes, Gregory
    Ettritch, Georgina
    REMOTE SENSING, 2020, 12 (07)