Extended physics-informed extreme learning machine for linear elastic fracture mechanics
被引:1
作者:
Zhu, Bokai
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Sci, Shenzhen, Peoples R ChinaHarbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
Zhu, Bokai
[1
]
Li, Hengguang
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USAHarbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
Li, Hengguang
[2
]
Zhang, Qinghui
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Peoples R ChinaHarbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
Zhang, Qinghui
[1
,3
]
机构:
[1] Harbin Inst Technol, Sch Sci, Shenzhen, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Peoples R China
The machine learning (ML) methods have been applied to numerical solutions to partial differential equations (PDEs) in recent years and achieved great success in PDEs with smooth solutions and in high dimensional PDEs. However, it is still challenging to develop high-precision ML solvers for PDEs with non-smooth solutions. The linear elastic fracture mechanics equation is a typical non-smooth problem, where the solution is discontinuous along with the crack face and has the radial singularity around the crack front. The general ML methods for the linear elastic fracture mechanics can achieve a relative error for displacements, about 10 -3 . To improve the accuracy, we analyze and extract the singular factors from the asymptotic expansions of solutions of the crack problem, such that the solution can be expressed by the singular factor multiplied by other smooth components. Then the general ML methods are enriched (multiplied) by the singular factor and used in a physics-informed neural network formulation. The new method is referred to as the extended physics-informed ML method, which improves the approximation significantly. We consider two typical ML methods, fully connected neural networks and extreme learning machine, where the extended physics-informed ML based on the extreme learning machine (XPIELM) achieves the relative errors about 10 -12 . We also study the stress intensity factor based on the XPIELM, and significantly improve the approximation of the stress intensity factor. The proposed XPIELM is applied to a two-dimensional Poisson crack problem, a two-dimensional elasticity problem, and a fully three-dimensional edge-crack elasticity problem in the numerical tests that exhibit various features of the method.
机构:
Univ Cuenca, Sch Engn, Av 12 Abril S-N, Cuenca, Ecuador
Univ Cuenca, Dept Recursos Hidr & Ciencias Ambientales, Av 12 Abril S-N, Cuenca, EcuadorTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Samaniego, E.
Anitescu, C.
论文数: 0引用数: 0
h-index: 0
机构:
Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Anitescu, C.
Goswami, S.
论文数: 0引用数: 0
h-index: 0
机构:
Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Goswami, S.
Nguyen-Thanh, V. M.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Nguyen-Thanh, V. M.
Guo, H.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Guo, H.
Hamdia, K.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Hamdia, K.
Zhuang, X.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Zhuang, X.
Rabczuk, T.
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, VietnamTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Sheng, Hailong
Yang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
机构:
Univ Cuenca, Sch Engn, Av 12 Abril S-N, Cuenca, Ecuador
Univ Cuenca, Dept Recursos Hidr & Ciencias Ambientales, Av 12 Abril S-N, Cuenca, EcuadorTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Samaniego, E.
Anitescu, C.
论文数: 0引用数: 0
h-index: 0
机构:
Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Anitescu, C.
Goswami, S.
论文数: 0引用数: 0
h-index: 0
机构:
Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Goswami, S.
Nguyen-Thanh, V. M.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Nguyen-Thanh, V. M.
Guo, H.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Guo, H.
Hamdia, K.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Hamdia, K.
Zhuang, X.
论文数: 0引用数: 0
h-index: 0
机构:
Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, GermanyTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Zhuang, X.
Rabczuk, T.
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, VietnamTon Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
机构:
Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
Sheng, Hailong
Yang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaChinese Acad Sci, Inst Software, Beijing 100190, Peoples R China