Design and optimization of hybrid seawater reverse osmosis-solar-driven desalination-pressure retarded osmosis system for energy efficient desalination maximizing economic potential

被引:0
|
作者
Kim, Sunwoo [1 ]
Jang, Jieun [1 ]
Lim, Jonghun [1 ,2 ]
Lee, Dongha [1 ]
Kim, Jeonghun [1 ]
Kim, Junghwan [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Inst Adv Engn, Hydrogen Energy Solut Ctr, Goan ro 51,beon gil,Baegam myeon, Yongin 17528, Gyeonggi do, South Korea
关键词
Reverse osmosis; Solar-driven desalination; Pressure retarded osmosis; Economic and energy assessment; Life cycle assessment; SUSTAINABLE POWER-GENERATION; IMPACT ASSESSMENT; MEMBRANES; PRO; DENSITY;
D O I
10.1016/j.watres.2024.123066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seawater reverse osmosis (SWRO)-pressure retarded osmosis (PRO) hybrid desalination system is being actively researched to reduce energy consumption by generating energy in the PRO. However, the SWRO-PRO hybrid system still faces the following challenges: low freshwater recovery and low energy generation. To resolve these challenges, this study first proposes a novel SWRO-Solar-driven desalination (SD)-PRO hybrid system for energy-efficient desalination. The proposed system comprises three major processes: SWRO for freshwater recovery, SD for freshwater recovery, and PRO for energy generation. First, the pressurized seawater passes through a semi-permeable SWRO membrane to produce freshwater, and the remaining concentrated brine enters the SD system. Second, an evaporator, that absorbs solar energy and quickly evaporates water floats on the SD system to recover additional freshwater. Third, the highly concentrated brine that remains unevaporated is used as a draw solution in PRO to generate energy. Consequently, the total freshwater recovery is increased by 14.54%, the specific energy consumption is reduced by 38.86%, and the levelized cost of the freshwater is reduced by 16.67% compared with the conventional SWRO-PRO system. Furthermore, the life cycle assessment results demonstrate that the proposed system is environmentally friendly. These results indicate that the proposed system is a feasible solution for sustainable desalination.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis
    Wang S.
    Kang L.
    Zhang B.
    Chen Q.
    Pan M.
    He C.
    Huagong Xuebao/CIESC Journal, 2019, 70 (02): : 617 - 624
  • [2] Economic evaluation of the reverse osmosis and pressure retarded osmosis hybrid desalination process
    Choi, Yongjun
    Shin, Yonghyun
    Cho, Hyeongrak
    Jang, Yongsun
    Hwang, Tae-Mun
    Lee, Sangho
    DESALINATION AND WATER TREATMENT, 2016, 57 (55) : 26680 - 26691
  • [3] Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalination
    Binger, Zachary M.
    Achilli, Andrea
    DESALINATION, 2020, 491
  • [4] Optimizing energy efficiency in desalination: Performance evaluation of seawater reverse osmosis and pressure retarded osmosis hybrid systems
    Kim, Yunhwan
    Lee, Gihong
    Byun, Jaeeun
    Lim, Se-ho
    Lee, Sangho
    Park, Yong-Gyun
    DESALINATION, 2025, 601
  • [5] Investigation into design parameters in seawater reverse osmosis (SWRO) and pressure retarded osmosis (PRO) hybrid desalination process: a semi-pilot scale study
    Chung, Kyungmi
    Yeo, In-Ho
    Lee, Wonil
    Oh, Young Khee
    Kim, Dongik
    Park, Yong-Gyun
    DESALINATION AND WATER TREATMENT, 2016, 57 (01) : 24636 - 24644
  • [6] Reverse Osmosis-Pressure Retarded Osmosis hybrid system: Modelling, simulation and optimization
    Senthil, S.
    Senthilmurugan, S.
    DESALINATION, 2016, 389 : 78 - 97
  • [7] Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination
    Altaee, Ali
    Millar, Graeme J.
    Zaragoza, Guillermo
    ENERGY, 2016, 103 : 110 - 118
  • [8] An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination
    Jeon, Jongmin
    Park, Beomseok
    Yoon, Yeomin
    Kim, Suhan
    DESALINATION AND WATER TREATMENT, 2016, 57 (55) : 26612 - 26620
  • [9] Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis
    Sharqawy, Mostafa H.
    Zubair, Syed M.
    Lienhard, John H.
    ENERGY, 2011, 36 (11) : 6617 - 6626
  • [10] Thermodynamic analysis of a stand-alone reverse osmosis desalination system powered by pressure retarded osmosis
    He, Wei
    Wang, Yang
    Sharif, Adel
    Shaheed, Mohammad Hasan
    DESALINATION, 2014, 352 : 27 - 37