Unveiling the fundamentals of flow boiling heat transfer enhancement on structured surfaces

被引:5
作者
Inanlu, Mohammad Jalal [1 ]
Ganesan, Vishwanath [1 ]
Upot, Nithin Vinod [1 ]
Wang, Chi [1 ]
Suo, Zan [1 ]
Fazle Rabbi, Kazi [1 ]
Kabirzadeh, Pouya [1 ]
Bakhshi, Alireza [1 ]
Fu, Wuchen [1 ]
Thukral, Tarandeep Singh [1 ]
Belosludtsev, Valentin [1 ]
Li, Jiaqi [1 ,2 ]
Miljkovic, Nenad [1 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Peoples R China
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[5] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, 744 Moto oka,Nishi Ku, Fukuoka 8190395, Japan
[6] Univ Illinois, Inst Sustainabil Energy & Environm iSEE, Urbana, IL 61801 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 45期
关键词
BUBBLE-GROWTH; SINGLE-PHASE; MICRO; CONDENSATION; MICROCHANNEL; TUBES; POOL; PREDICTION; WALL;
D O I
10.1126/sciadv.adp8632
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Micro- and nanostructured surfaces offer the potential to enhance two-phase heat transfer. However, the mechanisms behind these enhancements are not well-understood due to insufficient diagnostic methods, leading to reliance on trial-and-error surface development. We introduce in situ boroscopy to investigate microscale bubble dynamics during flow boiling nucleation and subsequent flow regime development. This method was applied in saturated flow boiling experiments within chemically etched aluminum and copper tubes. Although the surfaces have self-similar surface structures, our findings revealed varied heat transfer coefficient enhancements, with increases of up to 391% on aluminum and 41% on copper. Using boroscopy, we identified key mechanisms of heat transfer enhancement. We further used mercury porosimetry to determine the impact of pore size distribution on thermal performance. The boroscopy technique introduced here not only elucidates the underlying processes of flow boiling heat transfer enhancement but also has potential applications for the study of other two-phase phenomena.
引用
收藏
页数:16
相关论文
共 83 条
  • [31] Generalized Analysis of Dynamic Flow Fouling on Heat Transfer Surfaces
    Hatte, S.
    Stoddard, R.
    Pitchumani, R.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 188
  • [32] Data-driven approach to predict the flow boiling heat transfer coefficient of liquid hydrogen aviation fuel
    He, Yichuan
    Hu, Chengzhi
    Jiang, Bo
    Sun, Zhehao
    Ma, Jing
    Li, Hongyang
    Tang, Dawei
    [J]. FUEL, 2022, 324
  • [33] Hinze J.O., 1975, Turbulence, Vsecond
  • [34] Hsu Y.Y., 1962, J HEAT TRANS-T ASME, V84, P207, DOI [10.1115/1.3684339, DOI 10.1115/1.3684339]
  • [35] Hsu Y.- Y., 1961, An Analytical and Experimental Study of the Thermal Boundary Layer and Ebullition Cycle in Nucleate Boiling, V594
  • [36] Experimental investigation of a new hybrid structured surface for subcooled flow boiling heat transfer enhancement
    Huang, Shenghong
    Wang, Linlin
    Pan, Zhiwei
    Zhou, Zhanru
    [J]. APPLIED THERMAL ENGINEERING, 2021, 192
  • [37] Experimental Study on Flow Boiling Heat Transfer Characteristics of Ammonia in Microchannels
    Huang, Yanpei
    Yang, Qi
    Zhao, Jingquan
    Miao, Jianyin
    Shen, Xiaobin
    Fu, Weichun
    Wu, Qi
    Guo, Yuandong
    [J]. MICROGRAVITY SCIENCE AND TECHNOLOGY, 2020, 32 (03) : 477 - 492
  • [38] Johnson W. L., 2018, GRC-E-DAA-TN60252
  • [39] Effects of carbon nanotube coating on flow boiling in a micro-channel
    Khanikar, Vikash
    Mudawar, Issam
    Fisher, Timothy
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) : 3805 - 3817
  • [40] Machine learning enabled condensation heat transfer measurement
    Khodakarami, Siavash
    Rabbi, Kazi Fazle
    Suh, Youngjoon
    Won, Yoonjin
    Miljkovic, Nenad
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194