A comparison of fitness-case sampling methods for symbolic regression with genetic programming

被引:0
|
作者
Martínez, Yuliana [1 ]
Trujillo, Leonardo [1 ]
Naredo, Enrique [1 ]
Legrand, Pierrick [2 ,3 ]
机构
[1] TREE-LAB, Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Tijuana, Blvd. Industrial y Av. ITR Tijuana S/N, Mesa Otay C.P. 22500, Tijuana, B.C
[2] Université Victor Segalen Bordeaux 2 and The Institut de Mathmatiques de Bordeaux
[3] ALEA Team, INRIA Bordeaux Sud-Ouest
来源
Advances in Intelligent Systems and Computing | 2014年 / 288卷
关键词
Fitness-case sampling; Performance evaluation; Symbolic regression;
D O I
10.1007/978-3-319-07494-8_14
中图分类号
学科分类号
摘要
The canonical approach towards fitness evaluation in Genetic Programming (GP) is to use a static training set to determine fitness, based on a cost function averaged over all fitness-cases. However, motivated by different goals, researchers have recently proposed several techniques that focus selective pressure on a subset of fitness-cases at each generation. These approaches can be described as fitness-case sampling techniques, where the training set is sampled, in some way, to determine fitness. This paper shows a comprehensive evaluation of some of the most recent sampling methods, using benchmark and real-world problems for symbolic regression. The algorithms considered here are Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and a new sampling technique is proposed called Keep-Worst Interleaved Sampling (KW-IS). The algorithms are extensively evaluated based on test performance, overfitting and bloat. Results suggest that sampling techniques can improve performance compared with standard GP. While on synthetic benchmarks the difference is slight or none at all, on real-world problems the differences are substantial. Some of the best results were achieved by Lexicase Selection and KeepWorse-Interleaved Sampling. Results also show that on real-world problems overfitting correlates strongly with bloating. Furthermore, the sampling techniques provide efficiency, since they reduce the number of fitness-case evaluations required over an entire run. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [31] BASELINE GENETIC PROGRAMMING: SYMBOLIC REGRESSION ON BENCHMARKS FOR SENSORY EVALUATION MODELING
    Noel, Pierre-Luc
    Veeramachaneni, Kalyan
    O'Reilly, Una-May
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 173 - 194
  • [32] Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression
    Burlacu, Bogdan
    Kronberger, Gabriel
    Kommenda, Michael
    Affenzeller, Michael
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 338 - 339
  • [33] Parallel implementation of a genetic-programming based tool for symbolic regression
    Salhi, A
    Glaser, H
    De Roure, D
    INFORMATION PROCESSING LETTERS, 1998, 66 (06) : 299 - 307
  • [34] A Hybrid Grammar-based Genetic Programming for Symbolic Regression Problems
    Motta, Flavio A. A.
    de Freitas, Joao M.
    de Souza, Felipe R.
    Bernardino, Heder S.
    de Oliveira, Itamar L.
    Barbosa, Helio J. C.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2097 - 2104
  • [35] Genetic programming performance prediction and its application for symbolic regression problems
    Astarabadi, Samaneh Sadat Mousavi
    Ebadzadeh, Mohammad Mehdi
    INFORMATION SCIENCES, 2019, 502 : 418 - 433
  • [36] Speeding up Genetic Programming Based Symbolic Regression Using GPUs
    Zhang, Rui
    Lensen, Andrew
    Sun, Yanan
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 519 - 533
  • [37] Active Learning Informs Symbolic Regression Model Development in Genetic Programming
    Haut, Nathan
    Punch, Bill
    Banzhaf, Wolfgang
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 587 - 590
  • [38] Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
    Liu, Dazhuang
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 973 - 981
  • [39] Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression
    Wittenberg, David
    Rothlauf, Franz
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 612 - 614
  • [40] Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation
    Chen, Qi
    Xue, Bing
    Shang, Lin
    Zhang, Mengjie
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 709 - 716