A comparison of fitness-case sampling methods for symbolic regression with genetic programming

被引:0
|
作者
Martínez, Yuliana [1 ]
Trujillo, Leonardo [1 ]
Naredo, Enrique [1 ]
Legrand, Pierrick [2 ,3 ]
机构
[1] TREE-LAB, Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Tijuana, Blvd. Industrial y Av. ITR Tijuana S/N, Mesa Otay C.P. 22500, Tijuana, B.C
[2] Université Victor Segalen Bordeaux 2 and The Institut de Mathmatiques de Bordeaux
[3] ALEA Team, INRIA Bordeaux Sud-Ouest
来源
Advances in Intelligent Systems and Computing | 2014年 / 288卷
关键词
Fitness-case sampling; Performance evaluation; Symbolic regression;
D O I
10.1007/978-3-319-07494-8_14
中图分类号
学科分类号
摘要
The canonical approach towards fitness evaluation in Genetic Programming (GP) is to use a static training set to determine fitness, based on a cost function averaged over all fitness-cases. However, motivated by different goals, researchers have recently proposed several techniques that focus selective pressure on a subset of fitness-cases at each generation. These approaches can be described as fitness-case sampling techniques, where the training set is sampled, in some way, to determine fitness. This paper shows a comprehensive evaluation of some of the most recent sampling methods, using benchmark and real-world problems for symbolic regression. The algorithms considered here are Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and a new sampling technique is proposed called Keep-Worst Interleaved Sampling (KW-IS). The algorithms are extensively evaluated based on test performance, overfitting and bloat. Results suggest that sampling techniques can improve performance compared with standard GP. While on synthetic benchmarks the difference is slight or none at all, on real-world problems the differences are substantial. Some of the best results were achieved by Lexicase Selection and KeepWorse-Interleaved Sampling. Results also show that on real-world problems overfitting correlates strongly with bloating. Furthermore, the sampling techniques provide efficiency, since they reduce the number of fitness-case evaluations required over an entire run. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [21] Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
    Fleck, Philipp
    Werth, Bernhard
    Affenzeller, Michael
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [22] SEMANTICS BASED MUTATION IN GENETIC PROGRAMMING: THE CASE FOR REAL-VALUED SYMBOLIC REGRESSION
    Uy, Nguyen Quang
    Hoai, Nguyen Xuan
    O'Neill, Michael
    MENDELL 2009, 2009, : 73 - 80
  • [23] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [24] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [25] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [26] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [27] Instance based Transfer Learning for Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3006 - 3013
  • [28] A Comparative Study on the Numerical Performance of Kaizen Programming and Genetic Programming for Symbolic Regression Problems
    Ferreira, Jimena
    Ines Torres, Ana
    Pedemonte, Martin
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 202 - 207
  • [29] LGP-VEC: A Vectorial Linear Genetic Programming for Symbolic Regression
    Gligorovski, Nikola
    Zhong, Jinghui
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 579 - 582
  • [30] GPTIPS: An Open Source Genetic Programming Toolbox For Multigene Symbolic Regression
    Searson, Dominic P.
    Leahy, David E.
    Willis, Mark J.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 77 - +