A comparison of fitness-case sampling methods for symbolic regression with genetic programming

被引:0
|
作者
Martínez, Yuliana [1 ]
Trujillo, Leonardo [1 ]
Naredo, Enrique [1 ]
Legrand, Pierrick [2 ,3 ]
机构
[1] TREE-LAB, Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Tijuana, Blvd. Industrial y Av. ITR Tijuana S/N, Mesa Otay C.P. 22500, Tijuana, B.C
[2] Université Victor Segalen Bordeaux 2 and The Institut de Mathmatiques de Bordeaux
[3] ALEA Team, INRIA Bordeaux Sud-Ouest
来源
Advances in Intelligent Systems and Computing | 2014年 / 288卷
关键词
Fitness-case sampling; Performance evaluation; Symbolic regression;
D O I
10.1007/978-3-319-07494-8_14
中图分类号
学科分类号
摘要
The canonical approach towards fitness evaluation in Genetic Programming (GP) is to use a static training set to determine fitness, based on a cost function averaged over all fitness-cases. However, motivated by different goals, researchers have recently proposed several techniques that focus selective pressure on a subset of fitness-cases at each generation. These approaches can be described as fitness-case sampling techniques, where the training set is sampled, in some way, to determine fitness. This paper shows a comprehensive evaluation of some of the most recent sampling methods, using benchmark and real-world problems for symbolic regression. The algorithms considered here are Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and a new sampling technique is proposed called Keep-Worst Interleaved Sampling (KW-IS). The algorithms are extensively evaluated based on test performance, overfitting and bloat. Results suggest that sampling techniques can improve performance compared with standard GP. While on synthetic benchmarks the difference is slight or none at all, on real-world problems the differences are substantial. Some of the best results were achieved by Lexicase Selection and KeepWorse-Interleaved Sampling. Results also show that on real-world problems overfitting correlates strongly with bloating. Furthermore, the sampling techniques provide efficiency, since they reduce the number of fitness-case evaluations required over an entire run. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [1] A comparison of fitness-case sampling methods for genetic programming
    Martinez, Yuliana
    Naredo, Enrique
    Trujillo, Leonardo
    Legrand, Pierrick
    Lopez, Uriel
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2017, 29 (06) : 1203 - 1224
  • [2] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [3] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [4] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [5] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [6] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346
  • [7] Symbol Graph Genetic Programming for Symbolic Regression
    Song, Jinglu
    Lu, Qiang
    Tian, Bozhou
    Zhang, Jingwen
    Luo, Jake
    Wang, Zhiguang
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 221 - 237
  • [8] Genetic programming with separability detection for symbolic regression
    Liu, Wei-Li
    Yang, Jiaquan
    Zhong, Jinghui
    Wang, Shibin
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (03) : 1185 - 1194
  • [9] Genetic Programming with Rademacher Complexity for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2657 - 2664
  • [10] Memetic Semantic Genetic Programming for Symbolic Regression
    Leite, Alessandro
    Schoenauer, Marc
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 198 - 212