Enhancing high-temperature energy storage in all-organic composites through the polyfluorine effect

被引:0
|
作者
Wang, Jian [1 ]
Zheng, Yingying [1 ]
Peng, Biyun [1 ]
Zhang, Yifei [2 ]
Gong, Honghong [3 ]
Liang, Sen [1 ]
Zhou, Wenying [4 ]
Xie, Yunchuan [3 ]
机构
[1] Ningxia Univ, Sch Mat & New Energy, Ningxia Key Lab Photovolta Mat, Yinchuan 750021, Peoples R China
[2] Univ Alberta, Chem Dept, Edmonton, AB T6G 2N4, Canada
[3] Xi An Jiao Tong Univ, Sch Chem, Xian Key Lab Sustainable Energy Mat Chem, Xian 710049, Peoples R China
[4] Xian Univ Sci & Technol, Sch Chem & Chem Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluorinated polyimide; Polyfluorine effect; High-temperature; Composite dielectrics; STABILITY; DENSITY;
D O I
10.1016/j.est.2025.115559
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The extensive utilization of electrostatic capacitors across diverse sectors and extreme environments necessitates materials with high breakdown strength (E-b), substantial energy storage density (U-e) and exceptional toughness at high temperatures. Herein, all-organic composite films fluorinated-polyimide/polyvinylidenefluoride-hexafluoropropylene (F-PI/PVDF-HFP) were synthesized via in-situ compounding and multilayer casting. Experimental and theoretical calculations reveal that doping F-atoms in PI reduces dielectric loss and broadens the bandgap, while the introduction of the ferroelectric polymer PVDF-HFP enhances the high-temperature toughness and insulation of the composites through the polyfluorine effect, effectively suppressing carrier transport and preventing premature thermal/electrical breakdown. Consequently, the F-PI/PVDF-HFP achieves exceptional high-temperature energy storage performance (E-b similar to 500 MV/m, U-e similar to 5.2 J/cm(3), eta similar to 80 %) alongside robust toughness at 120 degrees C, surpassing most polymer dielectrics even at 150 degrees C (U-e similar to 2.91 J/cm(3), eta similar to 75 %@423 MV/m). This investigation unveils novel strategy leveraging the polyfluorine effect to advance the high-temperature energy storage performance and processing characteristics of PI-based dielectrics.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] High-temperature energy storage with a new tri-layers polymer composites via hybrid assembly engineering
    Wen, Fei
    Yuan, Hongbin
    Jiang, Mengquan
    Yang, Pingan
    Wang, Jian
    Zhang, Lin
    Li, Lili
    Wang, Gaofeng
    Li, Wenjun
    Wu, Wei
    Shen, Zhonghui
    Zhang, Shujun
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [42] Improved Energy Storage Performance of All-Organic Composite Dielectric via Constructing Sandwich Structure
    Feng, Mengjia
    Zhang, Tiandong
    Song, Chunhui
    Zhang, Changhai
    Zhang, Yue
    Feng, Yu
    Chi, Qingguo
    Chen, Qingguo
    Lei, Qingquan
    POLYMERS, 2020, 12 (09) : 1 - 13
  • [43] Ultrafine MOF as charge trap enables superior high-temperature energy storage performance in polyetherimide composites dielectrics
    Zhang, Na
    Zhao, Hang
    Zhang, Chuying
    Guo, Haotong
    Dang, Zhi-Min
    Bai, Jinbo
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [44] Superior dielectric energy storage performance for high-temperature film capacitors through molecular structure design
    Ding, Song
    Jia, Jiangheng
    Dai, Zhizhan
    Wang, Yiwei
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [45] Enhancing high-temperature energy storage properties of polyetherimide dielectrics by constructing hierarchical Coulomb blockade layers of gold nanoparticles
    Xia, Shuimiao
    Lei, Li
    Zhu, Linwei
    Tang, Qingyang
    Ren, Zengliang
    Dastan, Davoud
    Shi, Zhicheng
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [46] Significantly enhanced high-temperature energy storage performance for polymer composite films with gradient distribution of organic fillers
    Sun, Hai
    Zhang, Tiandong
    Yin, Chao
    Sun, Hongzhan
    Zhang, Changhai
    Zhang, Yue
    Zhang, Yongquan
    Tang, Chao
    Chi, Qingguo
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [47] Anisotropic Semicrystalline Homopolymer Dielectrics for High-Temperature Capacitive Energy Storage
    Xu, Wenhan
    Zhou, Chenyi
    Ji, Wenhai
    Zhang, Yunhe
    Jiang, Zhenhua
    Bertram, Florian
    Shang, Yingshuang
    Zhang, Haibo
    Shen, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (24)
  • [48] Achieving Superior Energy Storage Properties of All-Organic Dielectric Polystyrene-Based Composites by Blending Rod-Coil Block Copolymers
    He, Guanghu
    Liu, Zijin
    Wang, Chao
    Chen, Sheng
    Luo, Hang
    Zhang, Dou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (24): : 8156 - 8169
  • [49] High-temperature energy storage properties of polyetherimide composites with tailored boron nitride quantum dots
    Han, Jiayang
    Gao, Wei
    Shao, Liujie
    Xu, Lixin
    Ye, Huijian
    NANOTECHNOLOGY, 2025, 36 (20)
  • [50] Effect of strain gradient and interface engineering on the high-temperature energy storage capacitors
    Hu, Guangliang
    Lu, Rui
    Hu, Tian-Yi
    Ma, Chunrui
    Liu, Ming
    APPLIED PHYSICS LETTERS, 2024, 125 (13)