Magnetic field and kinetic helicity evolution in simulations of interacting disk galaxies

被引:0
|
作者
Selg, S. [1 ]
Schmidt, W. [1 ]
机构
[1] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
关键词
magnetohydrodynamics (MHD); turbulence; methods: numerical; galaxies: evolution; galaxies: magnetic fields; STAR-FORMATION; GAS; MERGERS; AMPLIFICATION; CONNECTION; STARBURSTS; TURBULENCE; FEEDBACK; SPIRALS; BRIDGES;
D O I
10.1051/0004-6361/202450346
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. There are indications that the magnetic field evolution in galaxies is influenced by tidal interactions and mergers between galaxies. Aims. We carried out a parameter study of interacting disk galaxies with impact parameters ranging from central collisions to weakly interacting scenarios. The orientations of the disks were also varied. In particular, we investigated how magnetic field amplification depends on these parameters. Methods. We used magnetohydrodynamics for gas disks in combination with live dark-matter halos in adaptive mesh refinement simulations. The disks were initialized using a setup for isolated disks in hydrostatic equilibrium. Since we focused on the impact of tidal forces on magnetic field evolution, adiabatic physics was applied. Small-scale filtering of the velocity and magnetic field allowed us to estimate the turbulent electromotive force (EMF) and kinetic helicity. Results. Time series of the average magnetic field in central and outer disk regions show pronounced peaks during close encounters and mergers. This agrees with observed magnetic fields at different interaction stages. The central field strength exceeds 10 mu G (corresponding to an amplification factor of 2-3) for small impact parameters. As the disks are increasingly disrupted and turbulence is produced by tidal forces, the small-scale EMF reaches a significant fraction of the total EMF. The small-scale kinetic helicity is initially antisymmetric across the disk plane. Though its evolution is sensitive to both the impact parameter and inclinations of the rotation axes with respect to the relative motion of the disks, antisymmetry is generally broken through interactions and the merger remnant loses most of the initial helicity. The EMF and the magnetic field also decay rapidly after coalescence. Conclusions. The strong amplification during close encounters of the interacting galaxies is mostly driven by helical flows and a mean-field dynamo. The small-scale dynamo contributes significantly in post-interaction phases. However, the amplification of the magnetic field cannot be sustained.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array
    Arshakian, T. G.
    Beck, R.
    Krause, Marita
    Sokoloff, D.
    ASTRONOMY & ASTROPHYSICS, 2009, 494 (01) : 21 - 32
  • [22] Magnetic field evolution in simulations with Euler potentials
    Brandenburg, Axel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 401 (01) : 347 - 354
  • [23] Physical properties of tidal features in interacting disk galaxies
    Oh, Sang Hoon
    Kim, Woong-Tae
    Lee, Hyung Mok
    Kim, Jongsoo
    ASTROPHYSICAL JOURNAL, 2008, 683 (01) : 94 - 113
  • [24] Bihelical Spectrum of Solar Magnetic Helicity and Its Evolution
    Singh, Nishant K.
    Kaepylae, Maarit J.
    Brandenburg, Axel
    Kaepylae, Petri J.
    Lagg, Andreas
    Virtanen, Ilpo
    ASTROPHYSICAL JOURNAL, 2018, 863 (02)
  • [25] The Milky Way and the evolution of disk galaxies
    Prantzos, N
    GALAXY EVOLUTION: THEORY AND OBSERVATIONS, 2003, 17 : 121 - 124
  • [26] Conserving Local Magnetic Helicity in Numerical Simulations
    Zenati, Yossef
    Vishniac, Ethan T.
    ASTROPHYSICAL JOURNAL, 2023, 948 (01)
  • [27] The effect of supernova rate on the magnetic field evolution in barred galaxies
    Kulpa-Dybel, K.
    Nowak, N.
    Otmianowska-Mazur, K.
    Hanasz, M.
    Siejkowski, H.
    Kulesza-Zydzik, B.
    ASTRONOMY & ASTROPHYSICS, 2015, 575
  • [28] Modelling star formation and feedback in simulations of interacting galaxies
    Springel, V
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 312 (04) : 859 - 879
  • [29] Magnetic field evolution and reversals in spiral galaxies
    Dobbs, C. L.
    Price, D. J.
    Pettitt, A. R.
    Bate, M. R.
    Tricco, T. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 4482 - 4495
  • [30] Relative magnetic field line helicity
    Moraitis, K.
    Pariat, E.
    Valori, G.
    Dalmasse, K.
    ASTRONOMY & ASTROPHYSICS, 2019, 624