Spatio-temporal graph Bert network for EEG emotion recognition

被引:0
作者
Yan, Jingjie [1 ]
Du, Chengkun [1 ]
Li, Na [1 ]
Zhou, Xiaoyang [2 ,3 ]
Liu, Ying [4 ]
Wei, Jinsheng [1 ]
Yang, Yuan [5 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Jiangsu Key Lab Intelligent Informat Proc & Commun, Nanjing 210003, Peoples R China
[2] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
[3] China Mobile Zijin Jiangsu Innovat Res Inst Co Ltd, Nanjing 211189, Peoples R China
[4] China Mobile Commun Grp Jiangsu Co Ltd, Nanjing Branch, Nanjing 211135, Peoples R China
[5] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalogram; Emotion recognition; Spatio-temporal Graph Bert network; Graph Bert network; Long Short-Term Memory network;
D O I
10.1016/j.bspc.2025.107576
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
EEG data presents a topological structure in spatial. In order to effectively capture the temporal and spatial characteristics of brain data, this paper proposes a Spatio-temporal Graph Bert network (STGB) and applies it to the emotion recognition of Electroencephalogram (EEG) signals. The STGB network learns the EEG features from the spatial and the temporal domains respectively. In the spatial domain, the adjacency matrix is constructed to model the graph of EEG signals, and then the spatial domain features of EEG signals are extracted by using the Graph Bert network through the steps of subgraph partitioning, node embedding, node feature updating based on attention mechanism and node clustering. In the temporal domain, the spatial domain features of EEG signals obtained from each period are connected by the Long Short-Term Memory network (LSTM) to learn the temporal correlation of the EEG signals, so as to complete the EEG emotion recognition task. Experiments on SEED dataset and DEAP dataset prove that STGB can complete the learning of EEG features more comprehensively and accurately, and achieve a higher emotion recognition rate.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers [J].
Atkinson, John ;
Campos, Daniel .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 47 :35-41
[2]   Text Sentiment Orientation Analysis Based on Multi-Channel CNN and Bidirectional GRU With Attention Mechanism [J].
Cheng, Yan ;
Yao, Leibo ;
Xiang, Guoxiong ;
Zhang, Guanghe ;
Tang, Tianwei ;
Zhong, Linhui .
IEEE ACCESS, 2020, 8 :134964-134975
[3]   A spatio-temporal model for EEG-based person identification [J].
Das, Banee Bandana ;
Kumar, Pradeep ;
Kar, Debakanta ;
Ram, Saswat Kumar ;
Babu, Korra Sathya ;
Mohapatra, Ramesh Kumar .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (19) :28157-28177
[4]  
Defferrard M, 2016, ADV NEUR IN, V29
[5]  
Devlin J., 2018, arXiv
[6]  
Hochreiter S., 1997, NEURAL COMPUT, P1735, DOI DOI 10.1162/NECO.1997.9.8.1735
[7]   Bi-LSTM Model to Increase Accuracy in Text Classification: Combining Word2vec CNN and Attention Mechanism [J].
Jang, Beakcheol ;
Kim, Myeonghwi ;
Harerimana, Gaspard ;
Kang, Sang-ug ;
Kim, Jong Wook .
APPLIED SCIENCES-BASEL, 2020, 10 (17)
[8]  
Koelstra S., 2012, IEEE T AFFECT COMPUT, V3, P18, DOI DOI 10.1109/T-AFFC.2011.15
[9]  
Liu N., 2018, Multiple Feature Fusion for Automatic Emotion Recognition Using EEG Signals, P896
[10]   Zero-Shot Text Classification with Semantically Extended Graph Convolutional Network [J].
Liu, Tengfei ;
Hu, Yongli ;
Gao, Junbin ;
Sun, Yanfeng ;
Yin, Baocai .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :8352-8359