Estimation of genetic admixture proportions via haplotypes

被引:0
|
作者
Ko, Seyoon [1 ,2 ,3 ]
Sobel, M. [1 ,4 ]
Zhou, Hua [1 ,2 ]
Lange, Kenneth [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2024年 / 23卷
基金
美国国家科学基金会;
关键词
Admixture; Ancestry informative marker; Sparse clustering; OpenMendel; POPULATION-STRUCTURE; INFERENCE; ASSOCIATION; ANCESTRY; MODELS;
D O I
10.1016/j.csbj.2024.11.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood. The Bayesian approach adds a reasonable prior and samples the posterior distribution. Finally, the nonparametric approach decomposes the genotype matrix algebraically. Each approach scales successfully to datasets with a million individuals and a million single nucleotide polymorphisms (SNPs). Despite their variety, all current approaches assume independence between SNPs. To achieve independence requires performing LD (linkage disequilibrium) filtering before analysis. Unfortunately, this tactic loses valuable information and usually retains many SNPs still in LD. The present paper explores the option of explicitly incorporating haplotypes in ancestry estimation. Our program, HaploADMIXTURE, operates on adjacent SNP pairs and jointly estimates their haplotype frequencies along with admixture coefficients. This more complex strategy takes advantage of the rich information available in haplotypes and ultimately yields better admixture estimates and better clustering of real populations in curated datasets.
引用
收藏
页码:4384 / 4395
页数:12
相关论文
共 50 条
  • [21] Management increases genetic diversity of honey bees via admixture
    Harpur, Brock A.
    Minaei, Shermineh
    Kent, Clement F.
    Zayed, Amro
    MOLECULAR ECOLOGY, 2012, 21 (18) : 4414 - 4421
  • [22] Simplified detection of genetic background admixture using artificial intelligence
    Pauly, Rini
    Feltus, Frank Alexander
    CLINICAL GENETICS, 2024, 106 (03) : 247 - 257
  • [23] Admixture Indicative Interval (AII): a new approach to assess trends in genetic admixture
    Gourjon, Geraud
    Saliba-Serre, Berengere
    Degioanni, Anna
    GENETICA, 2014, 142 (05) : 473 - 482
  • [24] Brazilian urban population genetic structure reveals a high degree of admixture
    Giolo, Suely R.
    Soler, Julia M. P.
    Greenway, Steven C.
    Almeida, Marcio A. A.
    de Andrade, Mariza
    Seidman, J. G.
    Seidman, Christine E.
    Krieger, Jose E.
    Pereira, Alexandre C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2012, 20 (01) : 111 - 116
  • [25] Advancing admixture graph estimation via maximum likelihood network orientation
    Molloy, Erin K.
    Durvasula, Arun
    Sankararaman, Sriram
    BIOINFORMATICS, 2021, 37 : I142 - I150
  • [26] Genetic admixture accelerates invasion via provisioning rapid adaptive evolution
    Qiao, Hongmei
    Liu, Wenwen
    Zhang, Yihui
    Zhang, Yuan-Ye
    Li, Qingshun Q.
    MOLECULAR ECOLOGY, 2019, 28 (17) : 4012 - 4027
  • [27] Admixture mapping of genetic variants for uterine fibroids
    Zhang, Kui
    Wiener, Howard
    Aissani, Brahim
    JOURNAL OF HUMAN GENETICS, 2015, 60 (09) : 533 - 538
  • [28] The genetic history of admixture across inner Eurasia
    Jeong, Choongwon
    Balanovsky, Oleg
    Lukianova, Elena
    Kahbatkyzy, Nurzhibek
    Flegontov, Pavel
    Zaporozhchenko, Valery
    Immell, Alexander
    Wang, Chuan-Chao
    Ixan, Olzhas
    Khussainova, Elmira
    Bekmanov, Bakhytzhan
    Zaibert, Victor
    Lavryashina, Maria
    Pocheshkhova, Elvira
    Yusupov, Yuldash
    Agdzhoyan, Anastasiya
    Koshel, Sergey
    Bukin, Andrei
    Nymadawa, Pagbajabyn
    Turdikulova, Shahlo
    Dalimova, Dilbar
    Churnosov, Mikhail
    Skhalyakho, Roza
    Daragan, Denis
    Bogunov, Yuri
    Bogunova, Anna
    Shtrunov, Alexandr
    Dubova, Nadezhda
    Zhabagin, Maxat
    Yepiskoposyan, Levon
    Churakov, Vladimir
    Pislegin, Nikolay
    Damba, Larissa
    Saroyants, Ludmila
    Dibirova, Khadizhat
    Atramentova, Lubov
    Utevska, Olga
    Idrisov, Eldar
    Kamenshchikova, Evgeniya
    Evseeva, Irina
    Metspalu, Mait
    Outram, Alan K.
    Robbeets, Martine
    Djansugurova, Leyla
    Balanovska, Elena
    Schiffels, Stephan
    Haak, Wolfgang
    Reich, David
    Krause, Johannes
    NATURE ECOLOGY & EVOLUTION, 2019, 3 (06) : 966 - 976
  • [29] Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies
    Gouveia, Mateus H.
    Bentley, Amy R.
    Leal, Thiago P.
    Tarazona-Santos, Eduardo
    Bustamante, Carlos D.
    Adeyemo, Adebowale A.
    Rotimi, Charles N.
    Shriner, Daniel
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] Ancestry Informative Marker Sets for Determining Continental Origin and Admixture Proportions in Common Populations in America
    Kosoy, Roman
    Nassir, Rami
    Tian, Chao
    White, Phoebe A.
    Butler, Lesley M.
    Silva, Gabriel
    Kittles, Rick
    Alarcon-Riquelme, Marta E.
    Gregersen, Peter K.
    Belmont, John W.
    De La Vega, Francisco M.
    Seldin, Michael F.
    HUMAN MUTATION, 2009, 30 (01) : 69 - 78