Research Advances in Deep Learning for Image Semantic Segmentation Techniques

被引:1
|
作者
Xiao, Zhiguo [1 ,2 ]
Chai, Tengfei [1 ]
Li, Nianfeng [1 ]
Shen, Xiangfeng [1 ]
Guan, Tong [1 ]
Tian, Jia [3 ]
Li, Xinyuan [1 ]
机构
[1] Changchun Univ, Coll Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[3] Changchun Univ, Coll Cyber Secur, Changchun 130022, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Semantic segmentation; Remote sensing; Deep learning; Feature extraction; Accuracy; Computer architecture; Medical diagnostic imaging; Convolution; Biomedical imaging; Convolutional neural networks; Image segmentation; semantic segmentation; deep learning; image processing; CONVOLUTIONAL NEURAL-NETWORK; VISION; MODELS;
D O I
10.1109/ACCESS.2024.3496723
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image semantic segmentation represents a significant area of research within the field of computer vision. With the advent of deep learning, image semantic segmentation techniques that integrate deep learning have demonstrated superior accuracy compared to traditional image semantic segmentation methods. Recently, the Mamba architecture has demonstrated superior semantic segmentation performance compared to the Transformer architecture, and has consequently become a research focus in this field. Nevertheless, the specifics of the Mamba architecture have remained underexplored in the extant literature. This review provides a comprehensive overview of the latest research progress in deep learning techniques for semantic segmentation. It offers a systematic review of traditional convolutional neural network (CNN)-based architectures and focuses on a series of emerging architectures, including the Transformer architecture, the Mamba architecture, and cutting-edge approaches such as self-supervised learning strategies. For each category, a detailed account is provided of the principal algorithms and techniques employed, together with a report on the performance achieved using datasets commonly used in the field.
引用
收藏
页码:175715 / 175741
页数:27
相关论文
共 50 条
  • [21] Deep multimodal fusion for semantic image segmentation: A survey
    Zhang, Yifei
    Sidibe, Desire
    Morel, Olivier
    Meriaudeau, Fabrice
    IMAGE AND VISION COMPUTING, 2021, 105
  • [22] Medical Ultrasound Image Segmentation With Deep Learning Models
    Wang, Chuantao
    Zhang, Jinhua
    Liu, Siyu
    IEEE ACCESS, 2023, 11 : 10158 - 10168
  • [23] Deep learning in image segmentation for cancer
    Rai, Robba
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2024, 71 (04) : 505 - 508
  • [24] DIAL: Deep Interactive and Active Learning for Semantic Segmentation in Remote Sensing
    Lenczner, Gaston
    Chan-Hon-Tong, Adrien
    Le Saux, Bertrand
    Luminari, Nicola
    Le Besnerais, Guy
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3376 - 3389
  • [25] IIE-SegNet: Deep Semantic Segmentation Network With Enhanced Boundary Based on Image Information Entropy
    Li, Qing
    Wang, Hongjian
    Li, Ben-Yin
    Yanghua Tang
    Li, Juan
    IEEE ACCESS, 2021, 9 : 40612 - 40622
  • [26] A Generalization Sample Learning Method of Deep Learning for Semantic Segmentation of Remote Sensing Images
    Zheng, Chen
    Li, Jingying
    Chen, Yuncheng
    Wang, Leiguang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] How deep learning is empowering semantic segmentation Traditional and deep learning techniques for semantic segmentation: A comparison
    Sehar, Uroosa
    Naseem, Muhammad Luqman
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30519 - 30544
  • [28] MULTICLASS SEMANTIC SEGMENTATION FOR DIGITISATION OF MOVABLE HERITAGE USING DEEP LEARNING TECHNIQUES
    Patrucco, Giacomo
    Setragno, Francesco
    VIRTUAL ARCHAEOLOGY REVIEW, 2021, 12 (25): : 85 - 98
  • [29] Research on Multitask Deep Learning Network for Semantic Segmentation and Object Detection
    Rui, Ting
    Xiao, Feng
    Tang, Jian
    Zhang, Fukai
    Yang, Chengsong
    Liu, Min
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 708 - 718
  • [30] Image Classification and Semantic Segmentation with Deep Learning
    Quazi, Saiman
    Musa, Sarhan M.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,