Research Advances in Deep Learning for Image Semantic Segmentation Techniques

被引:1
作者
Xiao, Zhiguo [1 ,2 ]
Chai, Tengfei [1 ]
Li, Nianfeng [1 ]
Shen, Xiangfeng [1 ]
Guan, Tong [1 ]
Tian, Jia [3 ]
Li, Xinyuan [1 ]
机构
[1] Changchun Univ, Coll Comp Sci & Technol, Changchun 130022, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[3] Changchun Univ, Coll Cyber Secur, Changchun 130022, Peoples R China
关键词
Semantic segmentation; Remote sensing; Deep learning; Feature extraction; Accuracy; Computer architecture; Medical diagnostic imaging; Convolution; Biomedical imaging; Convolutional neural networks; Image segmentation; semantic segmentation; deep learning; image processing; CONVOLUTIONAL NEURAL-NETWORK; VISION; MODELS;
D O I
10.1109/ACCESS.2024.3496723
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image semantic segmentation represents a significant area of research within the field of computer vision. With the advent of deep learning, image semantic segmentation techniques that integrate deep learning have demonstrated superior accuracy compared to traditional image semantic segmentation methods. Recently, the Mamba architecture has demonstrated superior semantic segmentation performance compared to the Transformer architecture, and has consequently become a research focus in this field. Nevertheless, the specifics of the Mamba architecture have remained underexplored in the extant literature. This review provides a comprehensive overview of the latest research progress in deep learning techniques for semantic segmentation. It offers a systematic review of traditional convolutional neural network (CNN)-based architectures and focuses on a series of emerging architectures, including the Transformer architecture, the Mamba architecture, and cutting-edge approaches such as self-supervised learning strategies. For each category, a detailed account is provided of the principal algorithms and techniques employed, together with a report on the performance achieved using datasets commonly used in the field.
引用
收藏
页码:175715 / 175741
页数:27
相关论文
共 200 条
[1]   Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: comparative analysis, open challenges and new trends [J].
Abualigah, Laith ;
Almotairi, Khaled H. ;
Abd Elaziz, Mohamed .
APPLIED INTELLIGENCE, 2023, 53 (10) :11654-11704
[2]   Secure Communication of Military Reconnaissance Images Over UAV-Assisted Relay Networks [J].
Alexan, Wassim ;
Aly, Laila ;
Korayem, Yousef ;
Gabr, Mohamed ;
El-Damak, Dina ;
Fathy, Abdallah ;
Mansour, Hany A. A. .
IEEE ACCESS, 2024, 12 :78589-78610
[3]   P3S: Pertinent Privacy-Preserving Scheme for Remotely Sensed Environmental Data in Smart Cities [J].
Algarni, Fahad ;
Khan, Mohammad Ayoub ;
Alawad, Wedad ;
Halima, Nadhir Ben .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :5905-5918
[4]   A web-based mpox skin lesion detection system using state-of-the-art deep learning models considering racial diversity [J].
Ali, Shams Nafisa ;
Ahmed, Md. Tazuddin ;
Jahan, Tasnim ;
Paul, Joydip ;
Sani, S. M. Sakeef ;
Noor, Nawsabah ;
Asma, Anzirun Nahar ;
Hasan, Taufiq .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
[5]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Self-supervised Augmentation Consistency for Adapting Semantic Segmentation [J].
Araslanov, Nikita ;
Roth, Stefan .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15379-15389
[7]   Deep semantic segmentation of natural and medical images: a review [J].
Asgari Taghanaki, Saeid ;
Abhishek, Kumar ;
Cohen, Joseph Paul ;
Cohen-Adad, Julien ;
Hamarneh, Ghassan .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (01) :137-178
[8]   Semantic video segmentation with dynamic keyframe selection and distortion-aware feature rectification [J].
Awan, Mehwish ;
Shin, Jitae .
IMAGE AND VISION COMPUTING, 2021, 110
[9]   Medical Image Segmentation Review: The Success of U-Net [J].
Azad, Reza ;
Aghdam, Ehsan Khodapanah ;
Rauland, Amelie ;
Jia, Yiwei ;
Avval, Atlas Haddadi ;
Bozorgpour, Afshin ;
Karimijafarbigloo, Sanaz ;
Cohen, Joseph Paul ;
Adeli, Ehsan ;
Merhof, Dorit .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) :10076-10095
[10]  
Bachani V., 2024, P INT C EL COMP EN T, P1