Anomaly Detection in Dynamic Graphs: A Comprehensive Survey

被引:3
作者
Ekle, Ocheme Anthony [1 ]
Eberle, William [1 ]
机构
[1] Tennessee Technol Univ, Cookeville, TN 38505 USA
关键词
Graphs; anomaly detection; dynamic networks; graph neural networks(GNN); node anomaly; graph mining;
D O I
10.1145/3669906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This survey article presents a comprehensive and conceptual overview of anomaly detection (AD) using dynamic graphs. We focus on existing graph-based AD techniques and their applications to dynamic networks. The contributions of this survey article include the following: (i) a comparative study of existing surveys on AD; (ii) a Dynamic Graph-based anomaly detection (DGAD) review framework in which approaches for detecting anomalies in dynamic graphs are grouped based on traditional machine learning models, matrix transformations, probabilistic approaches, and deep learning approaches; (iii) a discussion of graphically representing both discrete and dynamic networks; and (iv) a discussion of the advantages of graph-based techniques for capturing the relational structure and complex interactions in dynamic graph data. Finally, this work identifies the potential challenges and future directions for detecting anomalies in dynamic networks. This DGAD survey approach aims to provide a valuable resource for researchers and practitioners by summarizing the strengths and limitations of each approach, highlighting current research trends, and identifying open challenges. In doing so, it can guide future research efforts and promote advancements in AD in dynamic graphs.
引用
收藏
页数:704
相关论文
共 50 条
[31]   A New Type of Anomaly Detection Problem in Dynamic Graphs: An Ant Colony Optimization Approach [J].
Tasnadi, Zoltan ;
Gasko, Noemi .
BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS, 2022, 13627 :46-53
[32]   A survey of anomaly detection techniques [J].
Fatma M. Ghamry ;
Ghada M. El-Banby ;
Adel S. El-Fishawy ;
Fathi E. Abd El-Samie ;
Moawad I. Dessouky .
Journal of Optics, 2024, 53 :756-774
[33]   A Survey on Explainable Anomaly Detection [J].
Li, Zhong ;
Zhu, Yuxuan ;
van Leeuwen, Matthijs .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (01)
[34]   Interactive Anomaly Detection in Dynamic Communication Networks [J].
Meng, Xuying ;
Wang, Yequan ;
Wang, Suhang ;
Yao, Di ;
Zhang, Yujun .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (06) :2602-2615
[35]   Hyperspectral Anomaly Detection: A Survey [J].
Su, Hongjun ;
Wu, Zhaoyue ;
Zhang, Huihui ;
Du, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) :64-90
[36]   A comprehensive survey of anomaly detection in banking, wireless sensor networks, social networks, and healthcare [J].
Zamini, Mohamad ;
Hasheminejad, Seyed Mohammad Hossein .
INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (02) :229-270
[37]   A survey of anomaly detection techniques [J].
Ghamry, Fatma M. ;
El-Banby, Ghada M. ;
El-Fishawy, Adel S. ;
Abd El-Samie, Fathi E. ;
Dessouky, Moawad I. .
JOURNAL OF OPTICS-INDIA, 2024, 53 (02) :756-774
[38]   Survey on Trajectory Anomaly Detection [J].
Li C.-N. ;
Feng G.-W. ;
Yao H. ;
Liu R.-Y. ;
Li Y.-N. ;
Xie K. ;
Miao Q.-G. .
Ruan Jian Xue Bao/Journal of Software, 2024, 35 (02) :927-974
[39]   A Survey on Embedding Dynamic Graphs [J].
Barros, Claudio D. T. ;
Mendonca, Matheus R. F. ;
Vieira, Alex B. ;
Ziviani, Artur .
ACM COMPUTING SURVEYS, 2023, 55 (01)
[40]   Nonparametric Anomaly Detection on Time Series of Graphs [J].
Ofori-Boateng, Dorcas ;
Gel, Yulia R. ;
Cribben, Ivor .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (03) :756-767