A Decision-Making Approach for Complex Unsignalized Intersection by Deep Reinforcement Learning

被引:1
|
作者
Li, Shanke [1 ]
Peng, Kun [1 ]
Hui, Fei [1 ]
Li, Ziqi [1 ]
Wei, Cheng [1 ]
Wang, Wenbo [1 ]
机构
[1] Changan Univ, Sch Informat Engn, Xian 710064, Peoples R China
基金
中国国家自然科学基金;
关键词
Decision making; Safety; Deep reinforcement learning; Task analysis; Vehicle dynamics; Training; Planning; Autonomous driving; CARLA; deep reinforcement learning (DRL); autonomous decision; unsignalized intersections; AUTONOMOUS VEHICLES;
D O I
10.1109/TVT.2024.3408917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Decision-making for automatic vehicles at unsignalized intersections with dense traffic is one of the most challenging tasks. Due to the complex structure and frequent traffic accidents, traditional rule-based methods struggle to address this issue flexibly and often produce suboptimal strategies. Recently, deep reinforcement learning (DRL) has garnered significant attention for its exceptional performance in decision-making problems. We propose a local attention safety deep reinforcement learning (LA-SRL) decision-making method for ego vehicle right-turns at unsignalized intersections. LA-SRL enables paying attention to different states of social vehicles within complex traffic environments and effectively deals with the impact of surrounding vehicles on ego vehicle. This contributes to enhancement of safe driving efficiency. To further balance the safety and efficiency of decision-making for ego vehicle at unsignalized intersections with dense traffic flow, we design a safety-reward function composed of risk reward and avail reward. The safety-reward function enables ego vehicle to promptly navigate out of high-risk areas, meanwhile avoiding collisions and reducing waiting periods. Finally, we evaluate our method in the CARLA simulator. The results demonstrate that LA-SRL outperforms state-of-the-art methods, achieving a remarkable success rate of 98.25% and reducing the average time to 6.6 seconds.
引用
收藏
页码:16134 / 16147
页数:14
相关论文
共 50 条
  • [1] Driving Tasks Transfer Using Deep Reinforcement Learning for Decision-Making of Autonomous Vehicles in Unsignalized Intersection
    Shu, Hong
    Liu, Teng
    Mu, Xingyu
    Cao, Dongpu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (01) : 41 - 52
  • [2] Decision-Making for Autonomous Vehicles in Random Task Scenarios at Unsignalized Intersection Using Deep Reinforcement Learning
    Xiao, Wenxuan
    Yang, Yuyou
    Mu, Xinyu
    Xie, Yi
    Tang, Xiaolin
    Cao, Dongpu
    Liu, Teng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 7812 - 7825
  • [3] Decision-Making Models for Autonomous Vehicles at Unsignalized Intersections Based on Deep Reinforcement Learning
    Xu, Shu-Yuan
    Chen, Xue-Mei
    Wang, Zi-Jia
    Hu, Yu-Hui
    Han, Xin-Tong
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 672 - 677
  • [4] Cooperative Decision-Making for Mixed Traffic at an Unsignalized Intersection Based on Multi-Agent Reinforcement Learning
    Zhuang, Huanbiao
    Lei, Chaofan
    Chen, Yuanhang
    Tan, Xiaojun
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [5] Reinforcement learning for decision-making under deep uncertainty
    Pei, Zhihao
    Rojas-Arevalo, Angela M.
    de Haan, Fjalar J.
    Lipovetzky, Nir
    Moallemi, Enayat A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 359
  • [6] Multi-agent Decision-making at Unsignalized Intersections with Reinforcement Learning from Demonstrations
    Huang, Chang
    Zhao, Junqiao
    Zhou, Hongtu
    Zhang, Hai
    Zhang, Xiao
    Ye, Chen
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [7] Decision-Making in Fallback Scenarios for Autonomous Vehicles: Deep Reinforcement Learning Approach
    Lee, Cheonghwa
    An, Dawn
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [8] Interactive Decision-making and Planning for Autonomous Driving vehicles in Unsignalized Intersection
    Xu C.
    Zhao W.
    Li L.
    Zhang R.
    Wang C.
    Chen F.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (14): : 202 - 212
  • [9] A Deep Reinforcement Learning Decision-Making Approach for Adaptive Cruise Control in Autonomous Vehicles
    Ghraizi, Dany
    Talj, Reine
    Francis, Clovis
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 71 - 78
  • [10] SPACECRAFT DECISION-MAKING AUTONOMY USING DEEP REINFORCEMENT LEARNING
    Harris, Andrew
    Teil, Thibaud
    Schaub, Hanspeter
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 1757 - 1775