Dissipativity and stability analysis using rational quadratic differential forms

被引:0
作者
Takaba K. [1 ]
机构
[1] Dept. of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
来源
Lecture Notes in Control and Information Sciences | 2010年 / 398卷
关键词
D O I
10.1007/978-3-540-93918-4_21
中图分类号
学科分类号
摘要
This paper is concerned with analysis of linear dynamical systems using rational quadratic differential forms (rational QDFs). The rational QDF is devised for the purpose of less conservative analysis in the behavioral system theory. We study the dissipativity of a linear system with respect to a supply rate defined by a rational QDF . Based on this analysis, a stability condition of an interconnected system is derived as a behavioral version of the passivity theorems with rational multipliers or scaled small gain theorem. © 2010 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:229 / 238
页数:9
相关论文
共 14 条
  • [1] Belur M.N., Trentelman H.L., The strict dissipativity synthesis problem and the rank of the coupling QDF, Syst. & Control Letters, 51, 3-4, pp. 247-258, (2004)
  • [2] Iwasaki T., Hara S., Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations, IEEE Trans. Autom. Control, 43, 5, pp. 619-630, (1998)
  • [3] Megretski A., Rantzer A., System analysis via integral quadratic constraints, IEEE Trans. Autom. Control, 42, 6, pp. 819-830, (1997)
  • [4] Peeters R., Rapisarda P., A two-variable approach to solve the polynomial Lyapunov equation, Syst. & Control Letters, 42, 2, pp. 117-126, (2001)
  • [5] Pendharkar I., Pillai H., Systems with sector bound nonlinearities: A behavioral approach, Syst. & Control Letters, 72, 2, pp. 112-122, (2007)
  • [6] Polderman J.W., Willems J.C., Introduction to Mathematical Systems Theory: A Behavioral Approach, (1998)
  • [7] Takaba K., Robust stability analysis of uncertain interconnections, SICE Journal Control, Measurement, and System Integration, 1, 6, pp. 435-442, (2008)
  • [8] Takaba K., Trentelman H.L., Willems J.C., On rational quadratic differential forms, Proceedings of 17th IFAC World Congress,Seoul, pp. 1311-1318, (2008)
  • [9] Trentelman H.L., Willems J.C., H∞ control in a behavioral context: The full information case, IEEE Trans. Autom. Control, 44, 3, pp. 521-536, (1999)
  • [10] Willems J.C., Trentelman H.L., On quadratic differential forms, SIAM J. Control and Optim., 36, 5, pp. 1703-1749, (1998)