Identifying fixed points in periodic gaits during passive walking

被引:0
|
作者
Su, Xuemin [1 ]
Zhao, Mingguo [1 ]
Zhang, Ji [1 ]
Dong, Hao [1 ]
机构
[1] Department of Automation, Tsinghua University, Beijing 100084, China
来源
Qinghua Daxue Xuebao/Journal of Tsinghua University | 2009年 / 49卷 / 08期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1109 / 1112
相关论文
共 50 条
  • [31] Passive Dynamic Walking with Knee and Fixed Flat Feet
    Kim, Joohyung
    Choi, Chong-Ho
    Spong, Mark W.
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2744 - 2750
  • [32] FIXED POINTS AND PERIODIC POINTS OF ORIENTATION-REVERSING PLANAR HOMEOMORPHISMS
    Boronski, J. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3717 - 3722
  • [33] Multistability of gaits, the basin of attraction and its external topology in the simplest passive walking model on stairs
    Rao, XiaoBo
    Gao, JianShe
    Ding, ShunLiang
    Liang, Jie
    Zhang, Jiangang
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [34] Differential Equations for the KPZ and Periodic KPZ Fixed Points
    Baik, Jinho
    Prokhorov, Andrei
    Silva, Guilherme L. F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1753 - 1806
  • [35] SEQUENTIAL CONDITIONS FOR FIXED AND PERIODIC POINTS - PRELIMINARY REPORTS
    BRYANT, JD
    GUSEMAN, LF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 795 - &
  • [36] ON FIXED AND PERIODIC POINTS UNDER CERTAIN SETS OF MAPPINGS
    HOLMES, RD
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (06): : 813 - &
  • [37] Interval Methods for Fixed and Periodic Points: Development and Visualization
    de Almeida Ayres, Jose Eduardo
    de Figueiredo, Luiz Henrique
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2020, 26 (10) : 1312 - 1330
  • [38] Fixed and periodic points of generalized contractions in metric spaces
    Mujahid Abbas
    Basit Ali
    Salvador Romaguera
    Fixed Point Theory and Applications, 2013
  • [39] Retracts, fixed point property and existence of periodic points
    Mai, JH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (11): : 1381 - 1386
  • [40] HYPERBOLIC FIXED POINTS AND PERIODIC ORBITS OF HAMILTONIAN DIFFEOMORPHISMS
    Ginzburg, Viktor L.
    Guerel, Basak Z.
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (03) : 565 - 590