A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain-Computer Interfaces to Enhance Motor Imagery Classification

被引:0
|
作者
Mallat, Souheyl [1 ]
Hkiri, Emna [2 ]
Albarrak, Abdullah M. [3 ]
Louhichi, Borhen [4 ]
机构
[1] Monastir Univ, Fac Sci, Dept Comp Sci, Monastir 5019, Tunisia
[2] Kairouan Univ, Higher Inst Comp Sci, Dept Comp Sci, Kairouan 3100, Tunisia
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11432, Saudi Arabia
[4] Imam Mohammad Ibn Saud Islamic Univ, Coll Engn, Dept Mech Engn, Riyadh 11432, Saudi Arabia
关键词
brain-computer interface; electroencephalography; deep learning; convolutional neural network; COMMON SPATIAL-PATTERN; ALGORITHMS;
D O I
10.3390/s25020443
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities. Despite this promise, extracting reliable control signals from noisy brain data remains a critical challenge. In this paper, we introduce a novel approach leveraging the collaborative synergy of five convolutional neural network (CNN) models to improve the classification accuracy of motor imagery tasks, which are essential components of BCI systems. Our method demonstrates exceptional performance, achieving an accuracy of 79.44% on the BCI Competition IV 2a dataset, surpassing existing state-of-the-art techniques in using multiple CNN models. This advancement offers significant promise for enhancing the efficacy and versatility of BCIs in a wide range of real-world applications, from assistive technologies to neurorehabilitation, thereby providing robust solutions for individuals with motor disabilities.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] EEG-Based Brain-Computer Interfaces
    Wang, Yijun
    Nakanishi, Masaki
    Zhang, Dan
    NEURAL INTERFACE: FRONTIERS AND APPLICATIONS, 2019, 1101 : 41 - 65
  • [42] Using Motor Imagery to Control Brain-Computer Interfaces for Communication
    Brumberg, Jonathan S.
    Burnison, Jeremy D.
    Pitt, Kevin M.
    FOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, AC 2016, PT I, 2016, 9743 : 14 - 25
  • [43] Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces
    Peterson, Victoria
    Nieto, Nicolas
    Wyser, Dominik
    Lambercy, Olivier
    Gassert, Roger
    Milone, Diego H.
    Spies, Ruben D.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (02) : 807 - 817
  • [44] EEG-based brain-computer interfaces
    McFarland, D. J.
    Wolpaw, J. R.
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 4 : 194 - 200
  • [45] Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks
    Parvan, Milad
    Ghiasi, Amir Rikhtehgar
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1825 - 1828
  • [46] Privacy-Preserving Domain Adaptation for Motor Imagery-Based Brain-Computer Interfaces
    Xia, Kun
    Deng, Lingfei
    Duch, Wlodzislaw
    Wu, Dongrui
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (11) : 3365 - 3376
  • [47] Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain-Computer Interfaces by Using Multi-Branch CNN
    Chowdhury, Radia Rayan
    Muhammad, Yar
    Adeel, Usman
    SENSORS, 2023, 23 (18)
  • [48] A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface
    Yohanandan, Shivanthan A. C.
    Kiral-Kornek, Isabell
    Tang, Jianbin
    Mshford, Benjamin S.
    Asif, Umar
    Harrer, Stefan
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5089 - 5092
  • [49] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [50] Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces
    Dai, Shengfa
    Wei, Qingguo
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2017, 16 (03) : 241 - 254