Data-driven study of the enthalpy of mixing in the liquid phase

被引:0
作者
Deffrennes, Guillaume [1 ]
Hallstedt, Bengt [2 ]
Abe, Taichi [3 ]
Bizot, Quentin [1 ]
Fischer, Evelyne [1 ]
Joubert, Jean-Marc [4 ]
Terayama, Kei [5 ,6 ]
Tamura, Ryo [7 ,8 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMAP, F-38000 Grenoble, France
[2] Rhein Westfal TH Aachen, Inst Mat Applicat Mech Engn IWM, Augustinerbach 4, D-52062 Aachen, Germany
[3] Natl Inst Mat Sci, Res Ctr Struct Mat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
[5] Yokohama City Univ, Grad Sch Med Life Sci, 1-7-29 Suehiro Cho,Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[6] Tokyo Inst Technol, MDX Res Ctr Element Strategy, 4259 Nagatsuta Cho,Midori Ku, Yokohama, Kanagawa 2268501, Japan
[7] Natl Inst Mat Sci, Ctr Basic Res Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[8] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778561, Japan
来源
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY | 2024年 / 87卷
基金
日本科学技术振兴机构;
关键词
Enthalpy of mixing; Liquid phase; Excess heat capacity; Alloys; Machine learning; Thermodynamics; REVISED THERMODYNAMIC DESCRIPTION; DIAGRAM PART II; KEY EXPERIMENTS; SN SYSTEM; TI SYSTEM; AL-MG; ZN SYSTEM; 1ST-PRINCIPLES CALCULATIONS; BINARY-SYSTEMS; TERNARY-SYSTEM;
D O I
10.1016/j.calphad.2024.102745
中图分类号
O414.1 [热力学];
学科分类号
摘要
The enthalpy of mixing in the liquid phase is a thermodynamic property reflecting interactions between elements that is key to predict phase transformations. Widely used models exist to predict it, but they have never been systematically evaluated. To address this, we collect a large amount of enthalpy of mixing data in binary liquids from a review of about 1000 thermodynamic evaluations. This allows us to clarify the prediction accuracy of Miedema's model which is state-of-the-art. We show that more accurate predictions can be obtained from a machine learning model based on LightGBM, and we provide them in 2415 binary systems. The data we collect also allows us to evaluate another empirical model to predict the excess heat capacity that we apply to 2211 binary liquids. We then extend the data collection to ternary metallic liquids and find that, when mixing is exothermic, extrapolations from the binary systems by Muggianu's model systematically lead to slight overestimations of roughly 10 % close to the equimolar composition. Therefore, our LightGBM model can provide reasonable estimates for ternary alloys and, by extension, for multicomponent alloys. Our findings extracted from rich datasets can be used to feed thermodynamic, empirical and machine learning models for material development. Our data, predictions, and code to generate machine learning descriptors from thermodynamic properties are all made available.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Towards accident prevention on liquid hydrogen: A data-driven approach for releases prediction
    Alfarizi, Muhammad Gibran
    Ustolin, Federico
    Vatn, Jorn
    Yin, Shen
    Paltrinieri, Nicola
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 236
  • [22] Data-driven resolvent analysis
    Herrmann, Benjamin
    Baddoo, Peter J.
    Semaan, Richard
    Brunton, Steven L.
    McKeon, Beverley J.
    JOURNAL OF FLUID MECHANICS, 2021, 918
  • [23] Data-Driven Materials Research and Development for Functional Coatings
    Xu, Kai
    Xiao, Xuelian
    Wang, Linjing
    Lou, Ming
    Wang, Fangming
    Li, Changheng
    Ren, Hui
    Wang, Xue
    Chang, Keke
    ADVANCED SCIENCE, 2024, 11 (42)
  • [24] Systematizing the lexicon of platforms in information systems: a data-driven study
    Bartelheimer, Christian
    zur Heiden, Philipp
    Luettenberg, Hedda
    Beverungen, Daniel
    ELECTRONIC MARKETS, 2022, 32 (01) : 375 - 396
  • [25] Data-driven information for action
    Wulff, Kristin
    Finnestrand, Hanne
    GIO-GRUPPE-INTERAKTION-ORGANISATION-ZEITSCHRIFT FUER ANGEWANDTE ORGANISATIONSPSYCHOLOGIE, 2023, 54 (01): : 65 - 77
  • [26] A new data-driven paradigm for the study of avian migratory navigation
    Demsar, Urska
    Zein, Beate
    Long, Jed A.
    MOVEMENT ECOLOGY, 2025, 13 (01):
  • [27] Data-driven approaches to study the spectral properties of chemical structures
    Masmali, Ibtisam
    Nadeem, Muhammad Faisal
    Mufti, Zeeshan Saleem
    Ahmad, Ali
    Koam, Ali N. A.
    Ghazwani, Haleemah
    HELIYON, 2024, 10 (17)
  • [28] Systematizing the lexicon of platforms in information systems: a data-driven study
    Christian Bartelheimer
    Philipp zur Heiden
    Hedda Lüttenberg
    Daniel Beverungen
    Electronic Markets, 2022, 32 : 375 - 396
  • [29] Fundamental Limits of Data Utility: A Case Study for Data-Driven Identity Authentication
    Yang, Qing
    Wang, Cheng
    Wang, Changqi
    Teng, Hu
    Jiang, Changjun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2021, 8 (02) : 398 - 409
  • [30] Calorimetric investigation of the mixing enthalpy of liquid Co-Cu-Ti alloys at 1873 K
    Dreval, Liya A.
    Agraval, Pavel G.
    Turchanin, Mikhail A.
    PHYSICS AND CHEMISTRY OF LIQUIDS, 2018, 56 (05) : 674 - 684