共 18 条
- [1] Liu W., Wang Y., Shen J., Optimal fitting cumulants method for dynamic light scattering, Acta Optica Sinica, 33, 12, (2013)
- [2] Dou Z., Wang Y., Shen J., Et al., A hybrid non-negative constraint inversion of dynamic light scattering based on truncated singular value decomposition, Chinese J Lasers, 40, 6, (2013)
- [3] Wang Z., Cai X., Xu C., Et al., Nanoparticle sizing by image processing with dynamic light scattering, Acta Optica Sinica, 34, 1, (2014)
- [4] Provencher S.W., CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations, Comput Phy Commun, 27, 3, pp. 229-242, (1982)
- [5] Mcwhirter J.G., Pike E.R., On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind, Phys A: Math Gen, 11, 9, pp. 1729-1745, (1978)
- [6] Dahneke B.E., Measurement of Suspended Partieles by Quasi-Elastie Light Scattering, (1983)
- [7] Sun Y.F., Walker J.G., Maximum likelihood data inversion for photon correlation spectroscopy, Meas Sci Technol, 19, 11, (2008)
- [8] Morrison I.D., Grabowski E.F., Herb C.A., Improved techniques for particle size determination by quasi-elastic light scattering, Langmuir, 1, 4, pp. 496-501, (1985)
- [9] Han Q., Shen J., Sun X., Et al., A posterior choice strategies of the tikhonov regularization parameter in the inverse algorithm of the photon correlation spectroscopy particle sizing techniques, Acta Photonica Sinica, 38, 11, pp. 2917-2926, (2009)
- [10] Zhu X.J., Shen J., Liu W., Et al., Nonnegative least-squares truncated singular value decomposition to particle size distribution inversion from dynamic light scattering data, Appl Opt, 49, 34, pp. 6591-6596, (2010)