Rational design of novel star-shaped organic molecules as hole-transporting materials in perovskite solar cells

被引:0
|
作者
Qin, Ming [1 ]
Zhu, Wenjing [1 ]
Liu, Yue [1 ]
Zhou, Xin [1 ,2 ]
机构
[1] Dalian Univ, Coll Environm & Chem Engn, Dalian 116622, Liaoning, Peoples R China
[2] Liaoning Normal Univ, Interdisciplinary Res Ctr Biol & Chem, Dalian 116029, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
D-PI-A; DENSITY FUNCTIONALS; CHARGE-TRANSPORT; THERMOCHEMICAL KINETICS; METHOXY SUBSTITUENTS; CORRELATION-ENERGY; ABSOLUTE HARDNESS; EFFICIENT; HYBRID; DERIVATIVES;
D O I
10.1039/d4nj04106b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing highly efficient hole-transporting materials (HTMs) has recently become one of the effective approaches to increasing the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). Herein, twelve novel star-shaped organic small molecules (A1-F2) are simulated by using triphenylamine as the core group, introducing different electron-accepting pi-bridges and modulating terminal groups. The equilibrium geometries, electronic structures, optical properties, stabilities, solubilities, hole mobilities and adsorption features on the perovskite surface of the isolated molecules are calculated by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in combination with the Marcus charge transfer theory. Our theoretical results demonstrate that the electron-withdrawing ability of pi-linkers and the molecular planarity have an important influence on the various properties of the studied molecules. Compared with the reference HTMs, the designed molecules with benzothiadiazole-based and benzoxadiazole-based electron-accepting bridges, especially E1, F1, C2, D2, E2 and F2, exhibit more suitable frontier molecular orbital character, good optical properties, larger Stokes shifts, similar or better solubility, good stability and higher hole mobilities, and are expected to be potential HTM candidates to help create more efficient solar cells.
引用
收藏
页码:19828 / 19841
页数:14
相关论文
共 50 条
  • [31] Peripheral group engineering on hole-transporting materials in perovskite solar cells: Theoretical design and experimental research
    Chen, Qian
    Liu, Hongyuan
    Wang, Ruiqin
    Wu, Chengyu
    Wu, Fei
    Liu, Xing
    Liu, Xiaorui
    DYES AND PIGMENTS, 2022, 206
  • [32] Effect of it-linker extension on property of fluorene-based hole-transporting materials for perovskite solar cells
    Zhou, Yu
    Zhang, Zemin
    Cui, Jianyu
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2020, 1192
  • [33] What Should be Considered While Designing Hole-Transporting Material for Perovskite Solar Cells? A Special Attention to Thiophene-Based Hole-Transporting Materials
    Purushothaman, Palani
    Karpagam, Subramanian
    TOPICS IN CURRENT CHEMISTRY, 2024, 382 (02)
  • [34] Unraveling the Structure-Property Relationship of Molecular Hole-Transporting Materials for Perovskite Solar Cells
    Fang, Lingyi
    Zheng, Aibin
    Ren, Ming
    Xie, Xinrui
    Wang, Peng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (42) : 39001 - 39009
  • [35] Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells
    Chen, Jian
    Xia, Jianxing
    Yu, Hui-Juan
    Zhong, Jun -Xing
    Wu, Xiao-Kun
    Qin, Yuan-Shou
    Jia, Chunyang
    She, Zhigang
    Kuang, Dai-Bin
    Shao, Guang
    CHEMISTRY OF MATERIALS, 2019, 31 (15) : 5431 - 5441
  • [36] Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells
    Shao, Jiang-Yang
    Zhong, Yu-Wu
    CHEMICAL PHYSICS REVIEWS, 2021, 2 (02):
  • [37] Theoretical insights into the effect of a conjugated core on the hole transport properties of hole-transporting materials for perovskite solar cells
    Zhang, Zemin
    Hu, Weixia
    Cui, Jianyu
    He, Rongxing
    Shen, Wei
    Li, Ming
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (36) : 24574 - 24582
  • [38] Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells
    Urieta-Mora, Javier
    Zimmermann, Iwan
    Arago, Juan
    Molina-Ontoria, Agustin
    Orti, Enrique
    Martin, Nazario
    Nazeeruddin, Mohammad Khaja
    CHEMISTRY OF MATERIALS, 2019, 31 (17) : 6435 - 6442
  • [39] Effects of Heteroatom and Extending the Conjugation on Linear Hole-Transporting Materials for Perovskite Solar Cells
    Wang, Ying
    Wu, Nan
    Zhang, Xianfu
    Liu, Xuepeng
    Han, Mingyuan
    Ghadari, Rahim
    Guo, Fuling
    Ding, Yong
    Cai, Molang
    Dai, Songyuan
    ACS APPLIED ENERGY MATERIALS, 2022, : 10553 - 10561
  • [40] Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells
    Rezaei, Farideh
    Mohajeri, Afshan
    SOLAR ENERGY, 2021, 221 : 536 - 544