Mathematical modelling and dynamics of proton exchange membrane electrolyzer

被引:2
作者
Abhishek, Uthukota Sriram [1 ]
Tewari, Pradip Kumar [1 ,2 ]
Anand, Vikky [1 ,2 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Chem Engn, Jodhpur 342030, Rajasthan, India
[2] Indian Inst Technol Jodhpur, Rishabh Ctr Res & Innovat Clean Energy, Jodhpur 342030, India
关键词
PEM electrolyzer; MATLAB/Simulink; Mathematical modelling; Dynamic simulation; Hydrogen; PEM WATER ELECTROLYSIS; FUEL-CELL; SIMULATION; SYSTEM; PERFORMANCE; PREDICTION; PARAMETERS; PLATE; FLOW;
D O I
10.1016/j.ijhydene.2024.12.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane electrolyzer has emerged as a capable energy source and is a primary building block in delivering clean energy solutions. This work proposes a comprehensive model of a proton exchange membrane electrolyzer-based hydrogen generating system using MATLAB/Simulink environment. The proposed model incorporates key variables such as membrane water content, mass conservation, and thermodynamic principles. A step change in current from 40A to 15A is introduced to show the formulated model's flexibility, capturing the dynamics of partial pressure, voltage, and hydrogen produced. A drop in cell voltage from 1.65 V to 1.39 at 0.5A/ cm2 is observed when the temperature is increased from 280K to 360K, proving the model's accuracy. The results also showed that voltage losses are due to activation, concentration, and electronic and ionic ohmic losses at varying current densities. Moreover, the numerical study of this model is validated with experimental investigation, resulting in the root mean squared error of 0.012.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 65 条
[1]   Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell [J].
Abdin, Z. ;
Webb, C. J. ;
Gray, E. MacA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) :13243-13257
[2]   Multiphysics simulation of a PEM electrolyser: Energetic Macroscopic Representation approach [J].
Agbli, K. S. ;
Pera, M. C. ;
Hissel, D. ;
Rallieres, O. ;
Turpin, C. ;
Doumbia, I. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) :1382-1398
[3]   Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell [J].
Asl, S. M. Sharifi ;
Rowshanzamir, S. ;
Eikani, M. H. .
ENERGY, 2010, 35 (04) :1633-1646
[4]   Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production [J].
Awasthi, A. ;
Scott, Keith ;
Basu, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) :14779-14786
[5]   A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer [J].
Biaku, C. Y. ;
Dale, N. V. ;
Mann, M. D. ;
Salehfar, H. ;
Peters, A. I. ;
Han, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4247-4254
[6]   MATLAB/Simulink simulation of low-pressure PEM electrolyzer stack [J].
Brezak, Dinko ;
Kovac, Ankica ;
Firak, Mihajlo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (16) :6158-6173
[7]   Dynamic first principles model of a complete reversible fuel cell system [J].
Brown, Tim M. ;
Brouwer, Jacob ;
Samuelsen, G. Scott ;
Holcomb, Franklin H. ;
King, Joel .
JOURNAL OF POWER SOURCES, 2008, 182 (01) :240-253
[8]   A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell [J].
Busquet, S ;
Hubert, CE ;
Labbé, J ;
Mayer, D ;
Metkemeijer, R .
JOURNAL OF POWER SOURCES, 2004, 134 (01) :41-48
[9]  
Calder N., 2011, 2 PHASE FLOW PARAMET
[10]   A simple model for solid polymer electrolyte (SPE) water electrolysis [J].
Choi, PH ;
Bessarabov, DG ;
Datta, R .
SOLID STATE IONICS, 2004, 175 (1-4) :535-539