共 29 条
- [1] Satoh C., Dan K., Yamashita T., Et al., Flow cytometric parameters with little interexaminer variability for diagnosing low-grade myelodysplastic syndromes, Leukemia Research, 32, 5, pp. 699-707, (2008)
- [2] Gratama J.W., Kraan J., Keeney M., Et al., Reduction of variation in T-cell subset enumeration among 55 laboratories using single-platform, three or four-color flow cytometry based on CD45 and SSC-based gating of lymphocytes, Cytometry, 50, 2, pp. 92-101, (2002)
- [3] Van Blerk M., Bernier M., Bossuyt X., Et al., National external quality assessment scheme for lymphocyte immunophenotyping in Belgium, Clinical Chemistry and Laboratory Medicine, 41, 3, pp. 323-330, (2003)
- [4] Hahne F., Khodabakhshi A.H., Bashashati A., Et al., Per-channel basis normalization methods for flow cytometry data, Cytometry Part A, 77, 2, pp. 121-131, (2010)
- [5] Bashashati A., Brinkman R.R., A survey of flow cytometry data analysis methods, Advance in Bioinformatics, 2009, (2009)
- [6] Demers S., Kim J., Legendre P., Et al., Analyzing multivariate flow cytometric data in aquatic sciences, Cytometry, 13, 3, pp. 291-298, (1992)
- [7] Wilkins M.F., Hardy S.A., Boddy L., Et al., Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data, Cytometry, 44, 3, pp. 210-217, (2001)
- [8] Rousseeuw P.J., Kaufman L., Trauwaert E., Fuzzy clustering using scatter matrices, Comput Statist Data Anal, 23, 1, pp. 135-151, (1996)
- [9] Aghaeepour N., Nikolic R., Hoos H.H., Et al., Rapid cell population identification in flow cytometry data, Cytometry Part A, 79, 1, pp. 6-13, (2011)
- [10] Zare H., Shooshtari P., Gupta A., Et al., Data reduction for spectral clustering to analyze high throughput flow cytometry data[J/OL], BMC Bioinformatics, 11, (2010)