Impact of Surface Heterogeneity Induced Secondary Circulations on the Atmospheric Boundary Layer

被引:0
作者
Paleri, Sreenath [1 ,2 ,3 ]
Wanner, Luise [4 ,5 ]
Suehring, Matthias [6 ,7 ]
Desai, Ankur R. [1 ]
Mauder, Matthias [4 ,5 ]
Metzger, Stefan [1 ,8 ,9 ]
机构
[1] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA
[2] Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73072 USA
[3] NOAA, Atmospher Turbulence & Diffus Div, Air Resources Lab, Oak Ridge, TN 37830 USA
[4] TUD Dresden Tech Univ, Inst Hydrol & Meteorol, Dresden, Germany
[5] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Res, Garm Partenkirchen, Germany
[6] Leibniz Univ Hannover, Inst Meteorol & Climatol, Hannover, Germany
[7] Pecanode GmbH, Goslar, Germany
[8] AtmoFacts, Longmont, CO USA
[9] CarbonDew, Longmont, CO USA
基金
美国国家科学基金会;
关键词
Coupled large eddy simulations; Diurnal simulations; Land surface heterogeneity; CHEESEHEAD19; Energy balance; Dispersive fluxes; LARGE-EDDY SIMULATION; THERMALLY FORCED CIRCULATIONS; TURBULENT EXCHANGE; FLUX MEASUREMENTS; IMBALANCE PROBLEM; ENTRAINMENT ZONE; ENERGY IMBALANCE; ROLL VORTICES; FAIR-WEATHER; SCALE;
D O I
10.1007/s10546-024-00893-7
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We investigate how effective surface length scales (Leff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{eff}$$\end{document}) and atmospheric boundary layer stability modulate surface-induced secondary circulations over a realistic heterogeneous surface. The evolution of the circulations and their impact on surface-atmosphere fluxes are studied using coupled large eddy simulations of the CHEESEHEAD19 field campaign. The heterogeneity-induced circulations were diagnosed using time and ensemble averaging of the atmospheric fields. Simulations were performed for summer (August) and autumn (September) Intensive Observation Periods of the field campaign, characterised differently in terms of normalised surface length scales and ABL stability. Quasi-stationary and persistent circulations were diagnosed in the daytime ABL that span the entire mixed layer height (zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{i}$$\end{document}). Their variation in time and space are presented. Homogeneous control runs were also performed to compare and contrast spatial organisation and validate the time-ensemble averaging operation. In the convective boundary layers simulated during the summer time simulations, wavelengths that scale as the effective surface heterogeneity length scales contribute the most to the heterogeneity-induced transport. Contributions from surface-induced circulations were lower in the simulated near-neutral BL for the autumn simulations. We find that both Leff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{eff}$$\end{document}/zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{i}$$\end{document} and ABL static stability control the relative contribution of surface-induced circulations to the area averaged vertical transport. This scale analysis supports prior work over the study domain on scaling tower measured fluxes by including low frequency contributions. We believe that the conceptual framework presented here can be extended to include the effects of sub-grid land surface heterogeneity in numerical weather prediction and climate models and also to further explore scale-aware scaling methodologies for near surface-atmosphere exchanges.
引用
收藏
页数:32
相关论文
共 50 条
[41]   Influence of Langmuir circulations on turbulence in the bottom boundary layer of shallow water [J].
Deng, Bing-Qing ;
Yang, Zixuan ;
Xuan, Anqing ;
Shen, Lian .
JOURNAL OF FLUID MECHANICS, 2019, 861 :275-308
[42]   Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations [J].
van Hooft, J. Antoon ;
Popinet, Stephane ;
van Heerwaarden, Chiel C. ;
van der Linden, Steven J. A. ;
de Roode, Stephan R. ;
van de Wiel, Bas J. H. .
BOUNDARY-LAYER METEOROLOGY, 2018, 167 (03) :421-443
[43]   A Raman lidar to measure water vapor in the atmospheric boundary layer [J].
Froidevaux, Martin ;
Higgins, Chad W. ;
Simeonov, Valentin ;
Ristori, Pablo ;
Pardyjak, Eric ;
Serikov, Ilya ;
Calhoun, Ronald ;
van den Bergh, Hubert ;
Parlange, Marc B. .
ADVANCES IN WATER RESOURCES, 2013, 51 :345-356
[44]   The Modeling of the Atmospheric Boundary Layer over Inhomogeneously Moistened Surface as a Tool for vapotranspiration Estimation [J].
Nadezhina, E. D. ;
Shkol'nik, I. M. ;
Sternzat, A., V ;
Pikaleva, A. A. ;
Egorov, B. N. .
RUSSIAN METEOROLOGY AND HYDROLOGY, 2020, 45 (12) :835-843
[45]   Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer [J].
Skyllingstad, Eric D. ;
Vickers, Dean ;
Mahrt, Larry ;
Samelson, Roger .
BOUNDARY-LAYER METEOROLOGY, 2007, 123 (02) :219-237
[46]   Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer [J].
Eric D. Skyllingstad ;
Dean Vickers ;
Larry Mahrt ;
Roger Samelson .
Boundary-Layer Meteorology, 2007, 123 :219-237
[47]   Effect of sharp vegetation boundary on the convective atmospheric boundary layer [J].
Esau, IN ;
Lyons, TJ .
AGRICULTURAL AND FOREST METEOROLOGY, 2002, 114 (1-2) :3-13
[48]   A Two-Column Model Parameterization for Subgrid Surface Heterogeneity Driven Circulations [J].
Waterman, T. ;
Bragg, A. D. ;
Hay-Chapman, F. ;
Dirmeyer, P. A. ;
Fowler, M. D. ;
Simon, J. ;
Chaney, N. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (05)
[49]   Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds [J].
Momen, Mostafa ;
Parlange, Marc B. ;
Giometto, Marco G. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (07)
[50]   Transport of particles in an atmospheric turbulent boundary layer [J].
Xiongping Luo Shiyi Chen National Key Laboratory for Turbulence Research .
Acta Mechanica Sinica, 2005, (03) :235-242