Impact of Surface Heterogeneity Induced Secondary Circulations on the Atmospheric Boundary Layer

被引:0
作者
Paleri, Sreenath [1 ,2 ,3 ]
Wanner, Luise [4 ,5 ]
Suehring, Matthias [6 ,7 ]
Desai, Ankur R. [1 ]
Mauder, Matthias [4 ,5 ]
Metzger, Stefan [1 ,8 ,9 ]
机构
[1] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA
[2] Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73072 USA
[3] NOAA, Atmospher Turbulence & Diffus Div, Air Resources Lab, Oak Ridge, TN 37830 USA
[4] TUD Dresden Tech Univ, Inst Hydrol & Meteorol, Dresden, Germany
[5] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Res, Garm Partenkirchen, Germany
[6] Leibniz Univ Hannover, Inst Meteorol & Climatol, Hannover, Germany
[7] Pecanode GmbH, Goslar, Germany
[8] AtmoFacts, Longmont, CO USA
[9] CarbonDew, Longmont, CO USA
基金
美国国家科学基金会;
关键词
Coupled large eddy simulations; Diurnal simulations; Land surface heterogeneity; CHEESEHEAD19; Energy balance; Dispersive fluxes; LARGE-EDDY SIMULATION; THERMALLY FORCED CIRCULATIONS; TURBULENT EXCHANGE; FLUX MEASUREMENTS; IMBALANCE PROBLEM; ENTRAINMENT ZONE; ENERGY IMBALANCE; ROLL VORTICES; FAIR-WEATHER; SCALE;
D O I
10.1007/s10546-024-00893-7
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We investigate how effective surface length scales (Leff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{eff}$$\end{document}) and atmospheric boundary layer stability modulate surface-induced secondary circulations over a realistic heterogeneous surface. The evolution of the circulations and their impact on surface-atmosphere fluxes are studied using coupled large eddy simulations of the CHEESEHEAD19 field campaign. The heterogeneity-induced circulations were diagnosed using time and ensemble averaging of the atmospheric fields. Simulations were performed for summer (August) and autumn (September) Intensive Observation Periods of the field campaign, characterised differently in terms of normalised surface length scales and ABL stability. Quasi-stationary and persistent circulations were diagnosed in the daytime ABL that span the entire mixed layer height (zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{i}$$\end{document}). Their variation in time and space are presented. Homogeneous control runs were also performed to compare and contrast spatial organisation and validate the time-ensemble averaging operation. In the convective boundary layers simulated during the summer time simulations, wavelengths that scale as the effective surface heterogeneity length scales contribute the most to the heterogeneity-induced transport. Contributions from surface-induced circulations were lower in the simulated near-neutral BL for the autumn simulations. We find that both Leff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{eff}$$\end{document}/zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{i}$$\end{document} and ABL static stability control the relative contribution of surface-induced circulations to the area averaged vertical transport. This scale analysis supports prior work over the study domain on scaling tower measured fluxes by including low frequency contributions. We believe that the conceptual framework presented here can be extended to include the effects of sub-grid land surface heterogeneity in numerical weather prediction and climate models and also to further explore scale-aware scaling methodologies for near surface-atmosphere exchanges.
引用
收藏
页数:32
相关论文
共 50 条
[21]   The atmospheric boundary layer [J].
Nieuwstadt, FTM .
ENVIRONMENTAL STRATIFIED FLOWS, 2005, (479) :179-232
[22]   Impact of middle atmospheric humidity on boundary layer turbulence and clouds [J].
Malap, Neelam ;
Prabha, T. V. ;
Karipot, A. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2021, 215
[23]   Large-Eddy Simulations of Surface Heterogeneity Effects on the Convective Boundary Layer During the LITFASS-2003 Experiment [J].
Maronga, Bjoern ;
Raasch, Siegfried .
BOUNDARY-LAYER METEOROLOGY, 2013, 146 (01) :17-44
[24]   A Moving-Wave Implementation in WRF to Study the Impact of Surface Water Waves on the Atmospheric Boundary Layer [J].
Zhu, Peiyun ;
Li, Tianyi ;
Mirocha, Jeffrey D. ;
Arthur, Robert S. ;
Wu, Zhao ;
Fringer, Oliver B. .
MONTHLY WEATHER REVIEW, 2023, 151 (11) :2883-2903
[25]   Convectively Induced Secondary Circulations and Wind-Driven Heat Fluxes in the Surface Energy Balance Over Land [J].
Colston, Seth ;
Williams, Ian N. .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (20)
[26]   The Effect of Surface Heating Heterogeneity on Boundary Layer Height and Its Dependence on Background Wind Speed [J].
Liu, Rui ;
Liu, Shaofeng ;
Huang, Huishan ;
Dai, Yongjiu ;
Zeng, Xubin ;
Yuan, Hua ;
Wei, Zhongwang ;
Lu, Xingjie ;
Wei, Nan ;
Zhang, Shupeng ;
Wei, Junhong .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (19)
[27]   The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review [J].
Bou-Zeid, Elie ;
Anderson, William ;
Katul, Gabriel G. ;
Mahrt, Larry .
BOUNDARY-LAYER METEOROLOGY, 2020, 177 (2-3) :227-245
[28]   Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows [J].
Ghanesh Narasimhan ;
Dennice F. Gayme ;
Charles Meneveau .
Boundary-Layer Meteorology, 2024, 190
[29]   Is There a Scalar Atmospheric Surface Layer Within a Convective Boundary Layer? Implications for Flux Measurements [J].
Liu, Heping ;
Liu, Cheng ;
Zhou, Yanzhao ;
Zhang, Qianyu ;
Desai, Ankur R. ;
Ghannam, Khaled ;
Huang, Jianping ;
Katul, Gabriel G. .
GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (05)
[30]   Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows [J].
Narasimhan, Ghanesh ;
Gayme, Dennice F. ;
Meneveau, Charles .
BOUNDARY-LAYER METEOROLOGY, 2024, 190 (04)