Multimodal Feature Adaptive Fusion for Fake News Detection

被引:0
|
作者
Wang, Teng [1 ]
Zhang, Dawei [2 ]
Wang, Liqin [1 ]
Dong, Yongfeng [1 ]
机构
[1] School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin,300401, China
[2] National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing,100190, China
关键词
Fake detection - Feature extraction - Image fusion - Semantics;
D O I
10.3778/j.issn.1002-8331.2303-0316
中图分类号
学科分类号
摘要
In order to solve the problem that it is difficult to make full use of graphic and text information in multimodal news detection in social media news and to explore efficient multimodal information interaction methods, an adaptive multimodal feature fusion model for fake news detection is proposed. First, the model extracts and represents news text semantic features, text emotional features, and image-text semantic difference features; then, weighted splicing and fusion of various features are performed by adding adaptive weight parameters to reduce the redundancy introduced by model splicing; finally, the fusion feature is sent to the classifier. Experimental results show that the proposed model outperforms the current state-of-the-art models in evaluation indicators such as F1 score. It effectively improves the performance of fake news detection and provides strong support for the detection of fake news in social media. © 2024 Journal of Computer Engineering and Applications Beijing Co., Ltd.; Science Press. All rights reserved.
引用
收藏
页码:102 / 111
相关论文
共 50 条
  • [31] AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection
    Xu, Xiaoman
    Li, Xiangrun
    Wang, Taihang
    Jiang, Ye
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 86 - 100
  • [32] Clip-GCN: an adaptive detection model for multimodal emergent fake news domains
    Zhou, Yufeng
    Pang, Aiping
    Yu, Guang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5153 - 5170
  • [33] FAKE NEWS DETECTION BASED ON MULTI-FEATURE FUSION UNDER ATTENTION GUIDANCE
    Peng, Yan
    Wu, Huimin
    Wang, Lei
    Wang, Jie
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (09) : 1931 - 1941
  • [34] LLM-Enhanced multimodal detection of fake news
    Wang, Jingwei
    Zhu, Ziyue
    Liu, Chunxiao
    Li, Rong
    Wu, Xin
    PLOS ONE, 2024, 19 (10):
  • [35] Multimodal Multi-image Fake News Detection
    Giachanou, Anastasia
    Zhang, Guobiao
    Rosso, Paolo
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 647 - 654
  • [36] Dataset for multimodal fake news detection and verification tasks
    Bondielli, Alessandro
    Dell'Oglio, Pietro
    Lenci, Alessandro
    Marcelloni, Francesco
    Passaro, Lucia
    DATA IN BRIEF, 2024, 54
  • [37] Effective fake news video detection using domain knowledge and multimodal data fusion on youtube
    Choi, Hyewon
    Ko, Youngjoong
    PATTERN RECOGNITION LETTERS, 2022, 154 : 44 - 52
  • [38] SGAMF: Sparse Gated Attention-Based Multimodal Fusion Method for Fake News Detection
    Du, Pengfei
    Gao, Yali
    Li, Linghui
    Li, Xiaoyong
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 540 - 552
  • [39] Multimodal Fake News Detection Based on Multi-angle Fusion and Prediction Consistency Optimization
    Fu, Xian
    Zhang, Zhuzhu
    Wu, Tianrui
    Zhang, Ningning
    Zhang, Hui
    Sun, Yu
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 597 - 602
  • [40] MVAE: Multimodal Variational Autoencoder for Fake News Detection
    Khattar, Dhruv
    Goud, Jaipal Singh
    Gupta, Manish
    Varma, Vasudeva
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2915 - 2921