Multimodal Feature Adaptive Fusion for Fake News Detection

被引:0
|
作者
Wang, Teng [1 ]
Zhang, Dawei [2 ]
Wang, Liqin [1 ]
Dong, Yongfeng [1 ]
机构
[1] School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin,300401, China
[2] National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing,100190, China
关键词
Fake detection - Feature extraction - Image fusion - Semantics;
D O I
10.3778/j.issn.1002-8331.2303-0316
中图分类号
学科分类号
摘要
In order to solve the problem that it is difficult to make full use of graphic and text information in multimodal news detection in social media news and to explore efficient multimodal information interaction methods, an adaptive multimodal feature fusion model for fake news detection is proposed. First, the model extracts and represents news text semantic features, text emotional features, and image-text semantic difference features; then, weighted splicing and fusion of various features are performed by adding adaptive weight parameters to reduce the redundancy introduced by model splicing; finally, the fusion feature is sent to the classifier. Experimental results show that the proposed model outperforms the current state-of-the-art models in evaluation indicators such as F1 score. It effectively improves the performance of fake news detection and provides strong support for the detection of fake news in social media. © 2024 Journal of Computer Engineering and Applications Beijing Co., Ltd.; Science Press. All rights reserved.
引用
收藏
页码:102 / 111
相关论文
共 50 条
  • [11] Multimodal Fusion with Co-Attention Networks for Fake News Detection
    Wu, Yang
    Zhan, Pengwei
    Zhang, Yunjian
    Wang, Liming
    Xu, Zhen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2560 - 2569
  • [12] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100
  • [13] Semantic-enhanced multimodal fusion network for fake news detection
    Li, Shuo
    Yao, Tao
    Li, Saifei
    Yan, Lianshan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 12235 - 12251
  • [14] TLFND: A Multimodal Fusion Model Based on Three-Level Feature Matching Distance for Fake News Detection
    Wang, Junda
    Zheng, Jeffrey
    Yao, Shaowen
    Wang, Rui
    Du, Hong
    Li, Wei
    ENTROPY, 2023, 25 (11)
  • [15] Amharic Fake News Detection on Social Media Using Feature Fusion
    Worku, Menbere Hailu
    Woldeyohannis, Michael Melese
    Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2022, 411 LNICST : 468 - 479
  • [16] Multimodal Fake News Detection Incorporating External Knowledge and User Interaction Feature
    Fu, Lifang
    Liu, Shuai
    ADVANCES IN MULTIMEDIA, 2023, 2023
  • [17] A mutual attention based multimodal fusion for fake news detection on social network
    Guo, Ying
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15311 - 15320
  • [18] Escaping the neutralization effect of modality features fusion in multimodal Fake News Detection
    Wang, Bing
    Li, Ximing
    Li, Changchun
    Wang, Shengsheng
    Gao, Wanfu
    INFORMATION FUSION, 2024, 111
  • [19] Text-image multimodal fusion model for enhanced fake news detection
    Lin, Szu-Yin
    Chen, Yen-Chiu
    Chang, Yu-Han
    Lo, Shih-Hsin
    Chao, Kuo-Ming
    SCIENCE PROGRESS, 2024, 107 (04)
  • [20] Object Detection via Multimodal Adaptive Feature Fusion
    Gao Xiaoqiang
    Chang Kan
    Ling Mingyang
    Yin Mengyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)