Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies

被引:0
作者
机构
[1] School of Materials Science and Engineering, Beihang University, Beijing
来源
Guo, Hongbo | 1600年 / Chinese Society of Astronautics卷 / 35期
基金
中国国家自然科学基金;
关键词
Aero-engines; Bonding layer; Ceramics; Electron beam physical vapor deposition; Plasma activated; Plasma spray physical vapor deposition; Thermal barrier coatings;
D O I
10.7527/S1000-6893.2014.0161
中图分类号
学科分类号
摘要
The research background, significance and current status of high/ultra-high temperature thermal barrier coatings (TBCs) for aero-engine applications are briefly highlighted. The recent research progress in new generation TBCs for ultra-high temperature applications is reviewed. Emphasis is laid on the recent research achievements of Beihang University which involves new ceramic topcoat materials with superior-high temperature capabilities and thermal barrier performances, novel metallic bond coat materials with good oxidation resistance at temperatures above 1 150 °C, new processing technologies of TBCs including electron beam physical vapor deposition (EB -PVD), plasma activated EB -PVD (PA EB -PVD) and plasma spray physical vapor deposition (PS-PVD). Eventually, the prospective trends of TBCs for advanced aero-engine applications are forecast.
引用
收藏
页码:2722 / 2732
页数:10
相关论文
共 47 条
  • [1] Goward G.W., Progress in coatings for gas turbine airfoils, Surface & Coatings Technology, 108, 1-3, pp. 73-79, (1998)
  • [2] Milller R.A., Thermal barrier coatings for aircraft engines: history and directions, Journal of Thermal Spray Technology, 6, 1, pp. 35-42, (1997)
  • [3] Rebollo N.R., Fabrichnay O., Levi C.G., Phase stability of Y+Gd co-doped zirconia, Zeitschrift Fur Metallkunde, 94, 3, pp. 163-170, (2003)
  • [4] Rahaman M.N., Gross J.R., Dutton R.E., Et al., Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> compositions for potential thermal barrier coating applications, Acta Materialia, 54, 6, pp. 1615-1621, (2006)
  • [5] Leoni M., Jones R., Scardi P., Phase stability of scandia-yttria-stabilized zirconia TBCs, Surface & Coatings Technology, 108-109, pp. 107-113, (1998)
  • [6] Friedrich C., Gadow R., Schirmer T., Lanthanum hexaaluminate-a new material for atmospheric plasma spraying of advanced thermal barrier coatings, Journal of Thermal Spray Technology, 10, 4, pp. 592-859, (2001)
  • [7] Bansal N.P., Zhu D.M., Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings, Surface & Coatings Technology, 202, 12, pp. 2698-2703, (2008)
  • [8] Lehmann H., Pitzer D., Pracht G., Et al., Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, Journal of the American Ceramic Society, 86, 8, pp. 1338-1344, (2003)
  • [9] Duderstadt E.C., Bangalore A.N., Thermal barrier coating system with intermetallic overlay bond coat
  • [10] Schnitt-Thoms K.G., Hertter M., Improved oxide resistance of thermal barrier coatings, Surface & Coatings Technology, 120-121, pp. 84-88, (1999)