A supercapacitor is an excellent energy storage solution due to its high-power density, rapid charge and discharging, and long cycle life. However, the main technical issue with supercapacitors is low energy density. One potential solution is to develop advanced electrode materials that store more energy. In this study, we have grown 1D vanadium pentoxide nanofibers (VNFs) on a carbon nanofibers (CNFs) mat via a hydrothermal approach. The morphological study showed that the hybrid mat consists of a sandwich structure of VNFs and CNFs with a large surface area and plenty of pores, which facilitates efficient ion transport and electron movement important for high capacitance. Furthermore, a synergistic combination of pseudo-capacitance and electrical double layer capacitance (EDLC) from redox active VNFs and porous CNFs produces high capacitances of 700.1 and 615.2 F/g at 0.1 A/g in neutral electrolytes such as Na2SO4 and Li2SO4, respectively. A flexible prototype supercapacitor was constructed using a VNF/CNF hybrid mat as an anode, activated carbon cloth as a cathode, and a Na2SO4 or Li2SO4-loaded polyvinyl alcohol (PVA) membrane as an electrolyte-cum-separator. These ASC devices delivered high energy density of 72.51 and 51.83 Wh/kg with Na2SO4 and Li2SO4-based electrolytes, respectively, which are superior to those obtained from previously reported ASCs made with various V2O5/C anodes. The PVA-based membrane electrolytes provide excellent bending stability and leakage-proof features to ASCs, which are critical to flexible and wearable electronics.
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Wang, Libin
Yang, Huiling
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Yang, Huiling
Liu, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Liu, Xiaoxiao
Zeng, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Zeng, Rui
Li, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Li, Ming
Huang, Yunhui
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
Huang, Yunhui
Hu, Xianluo
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China