Atomic entanglement concentration via photonic Faraday rotation in cavity QED

被引:0
作者
Xiu, Xiao-ming [1 ]
Zhao, Zi-lin [1 ,2 ]
Wang, Xin-ying [1 ]
Yuan, Zi-qing [1 ]
Li, Jiu-ming [1 ]
Ji, Yan-qiang [1 ]
Dong, Li [1 ]
机构
[1] Bohai Univ, Coll Phys Sci & Technol, Jinzhou 121013, Peoples R China
[2] Qiqihar Univ, Coll Sci, Qiqihar 161006, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 26期
基金
中国国家自然科学基金;
关键词
INPUT-OUTPUT PROCESS; QUANTUM ENTANGLEMENT; STATE; PURIFICATION;
D O I
10.1364/OE.541186
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By utilizing Faraday rotation of photons, we present a highly efficient protocol for entanglement concentration of atomic Bell states, which departs from the conventional method of sequential interactions between the auxiliary photon and two optical cavities. Instead, the simultaneous interaction of the auxiliary photon with two atomic cavities is involved in order to significantly reduce the time requirement for achieving atomic Bell state entanglement concentration. By employing iterative applications of the protocol for entanglement concentration, the discarded states can be repeatedly concentrated, efficiently increasing the probability of success. Furthermore, our entanglement concentration protocols (ECPs) operate in low-Q cavities, which are easier to implement in practical applications than high-Q cavities. Finally, it can be generalized to an N-atom GHZ states entanglement concentration protocol.
引用
收藏
页码:45761 / 45773
页数:13
相关论文
共 65 条
  • [21] A single-atom detector integrated on an atom chip: fabrication, characterization and application
    Heine, D.
    Rohringer, W.
    Fischer, D.
    Wilzbach, M.
    Raub, T.
    Loziczky, S.
    Liu, XiYuan
    Groth, S.
    Hessmo, B.
    Schmiedmayer, J.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [22] Long-Distance Entanglement Purification for Quantum Communication
    Hu, Xiao-Min
    Huang, Cen-Xiao
    Sheng, Yu-Bo
    Zhou, Lan
    Liu, Bi-Heng
    Guo, Yu
    Zhang, Chao
    Xing, Wen-Bo
    Huang, Yun-Feng
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (01)
  • [23] Fast preparation of Bell state and W state with Rydberg superatom
    Ji, Y. Q.
    Liu, Y. L.
    Li, H.
    Zhou, X. J.
    Xiao, R. J.
    Dong, L.
    Xiu, X. M.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [24] Practically Enhanced Hyperentanglement Concentration for Polarization-Spatial Hyperentangled Bell States with Linear Optics and Common Single-Photon Detectors
    Jiang, Gui-Long
    Liu, Wen-Qiang
    Wei, Hai-Rui
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [25] Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity
    Li, Xi-Han
    Ghose, Shohini
    [J]. OPTICS EXPRESS, 2015, 23 (03): : 3550 - 3562
  • [26] Lita AE, 2008, OPT EXPRESS, V16, P3032, DOI 10.1364/OE.16.003032
  • [27] Theoretically efficient high-capacity quantum-key-distribution scheme
    Long, GL
    Liu, XS
    [J]. PHYSICAL REVIEW A, 2002, 65 (03): : 3
  • [28] Coupling a single atomic quantum bit to a high finesse optical cavity
    Mundt, AB
    Kreuter, A
    Becher, C
    Leibfried, D
    Eschner, J
    Schmidt-Kaler, F
    Blatt, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (10) : 103001 - 103001
  • [29] Concentration and purification of entanglement for qubit systems with ancillary cavity fields
    Ogden, C. D.
    Paternostro, M.
    Kim, M. S.
    [J]. PHYSICAL REVIEW A, 2007, 75 (04)
  • [30] Quantum computers and dissipation
    Palma, GM
    Suominen, KA
    Ekert, AK
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1946): : 567 - 584