Data-Driven Robust Output Regulation of Continuous-Time LTI Systems Using Koopman Operators

被引:0
|
作者
Deutscher, Joachim [1 ]
机构
[1] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
关键词
Regulation; Linear systems; Eigenvalues and eigenfunctions; Regulators; Uncertainty; Numerical models; Data models; Data-driven control; Koopman operator; Krylov dynamic mode decomposition (DMD); linear systems; robust output regulation; DYNAMIC-MODE DECOMPOSITION; CONTROLLABILITY;
D O I
10.1109/TAC.2024.3414708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with the data-driven robust output regulation for continuous-time linear time-invariant (LTI) systems. Both the system and the signal form of disturbances are unknown. It is assumed that input-output data on a finite-time interval are available for the system in the presence of disturbances. By making use of the Koopman operator theory, the Koopman eigenvalues and modes of the system and the disturbance model are determined by applying the Krylov dynamic mode decomposition to the data. For cyclic LTI systems, it is shown that this Koopman modal analysis is always feasible under generic conditions. With this, a data-driven output feedback regulator is determined on the basis of the internal model principle, which also ensures output regulation in the presence of nondestabilizing model uncertainties. A numerical example demonstrates the results of this article.
引用
收藏
页码:8774 / 8781
页数:8
相关论文
共 50 条
  • [31] Output regulation of a class of continuous-time Markovian jumping systems
    He, Shuping
    Ding, Zhengtao
    Liu, Fei
    SIGNAL PROCESSING, 2013, 93 (02) : 411 - 419
  • [32] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [33] Identification of Unstable Linear Systems using Data-driven Koopman Analysis
    Ketthong, Patinya
    Samkunta, Jirayu
    Nghia Thi Mai
    Hashikura, Kotaro
    Kamal, Md Abdus Samad
    Murakami, Iwanori
    Yamada, Kou
    2024 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, ECTI-CON 2024, 2024,
  • [34] Fault detection for LTI systems using data-driven dissipativity analysis
    Rosa, Tabitha E.
    Carvalho, Leonardo de Paula
    Gleizer, Gabriel A.
    Jayawardhana, Bayu
    MECHATRONICS, 2024, 97
  • [35] Modeling Quadruped Leg Dynamics on Deformable Terrains using Data-driven Koopman Operators
    Krolicki, Alexander
    Rufino, Dakota
    Zheng, Andrew
    Narayanan, Sriram S. K. S.
    Erb, Jackson
    Vaidya, Umesh
    IFAC PAPERSONLINE, 2022, 55 (37): : 420 - 425
  • [36] A Robust Data-Driven Koopman Kalman Filter for Power Systems Dynamic State Estimation
    Netto, Marcos
    Mili, Laraine
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (06) : 7228 - 7237
  • [37] A Proposition of Iterative LMI Method for Static Output Feedback Control of Continuous-Time LTI Systems
    Lee, Dong Hwan
    Joo, Young Hoon
    Kim, Hyung Jin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (03) : 666 - 672
  • [38] Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints
    Fan, Bo
    Yang, Qinmin
    Tang, Xiaoyu
    Sun, Youxian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) : 2127 - 2138
  • [39] A proposition of iterative LMI method for static output feedback control of continuous-time LTI systems
    Dong Hwan Lee
    Young Hoon Joo
    Hyung Jin Kim
    International Journal of Control, Automation and Systems, 2016, 14 : 666 - 672
  • [40] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709