Data-Driven Robust Output Regulation of Continuous-Time LTI Systems Using Koopman Operators

被引:0
|
作者
Deutscher, Joachim [1 ]
机构
[1] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
关键词
Regulation; Linear systems; Eigenvalues and eigenfunctions; Regulators; Uncertainty; Numerical models; Data models; Data-driven control; Koopman operator; Krylov dynamic mode decomposition (DMD); linear systems; robust output regulation; DYNAMIC-MODE DECOMPOSITION; CONTROLLABILITY;
D O I
10.1109/TAC.2024.3414708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with the data-driven robust output regulation for continuous-time linear time-invariant (LTI) systems. Both the system and the signal form of disturbances are unknown. It is assumed that input-output data on a finite-time interval are available for the system in the presence of disturbances. By making use of the Koopman operator theory, the Koopman eigenvalues and modes of the system and the disturbance model are determined by applying the Krylov dynamic mode decomposition to the data. For cyclic LTI systems, it is shown that this Koopman modal analysis is always feasible under generic conditions. With this, a data-driven output feedback regulator is determined on the basis of the internal model principle, which also ensures output regulation in the presence of nondestabilizing model uncertainties. A numerical example demonstrates the results of this article.
引用
收藏
页码:8774 / 8781
页数:8
相关论文
共 50 条
  • [21] Data-Driven Composite Nonlinear Feedback Control for Semi-Global Output Regulation of Unknown Linear Systems With Input Saturation
    Cai, Hanwen
    Lan, Weiyao
    Yu, Xiao
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3225 - 3230
  • [22] A Survey on the Methods and Results of Data-Driven Koopman Analysis in the Visualization of Dynamical Systems
    Parmar, Nishaal
    Refai, Hazem H.
    Runolfsson, Thordur
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (03) : 723 - 738
  • [23] Localized data-driven consensus control for continuous-time multi-agent systems
    Chang, Zeze
    Li, Zhongkui
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024,
  • [24] Data-driven analysis and control of periodic event-triggered continuous-time systems
    Wei, Zi-Jie
    Xu, Chang-Yi
    Liu, Kun-Zhi
    Qi, Wan-Ling
    Sun, Xi-Ming
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (13) : 7951 - 7967
  • [25] Data-driven Optimal Cooperative Output Regulation of Unknown Linear Discrete-time Multi-agent Systems
    Liang, Dong
    Dong, Yi
    Wang, Chaoli
    Tian, Engang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1738 - 1743
  • [26] Cooperative Output Regulation of Unknown Linear Multiagent Systems: When Deadbeat Control Meets Data-Driven Framework
    Tian, Engang
    Zhai, Ganghui
    Liang, Dong
    Liu, Jinliang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7556 - 7564
  • [27] A Robust Data-Driven Koopman Kalman Filter for Power Systems Dynamic State Estimation
    Netto, Marcos
    Mili, Laraine
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (06) : 7228 - 7237
  • [28] Data-driven policy iteration algorithm for optimal control of continuous-time Ito stochastic systems with Markovian jumps
    Song, Jun
    He, Shuping
    Liu, Fei
    Niu, Yugang
    Ding, Zhengtao
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (12) : 1431 - 1439
  • [29] Modeling Quadruped Leg Dynamics on Deformable Terrains using Data-driven Koopman Operators
    Krolicki, Alexander
    Rufino, Dakota
    Zheng, Andrew
    Narayanan, Sriram S. K. S.
    Erb, Jackson
    Vaidya, Umesh
    IFAC PAPERSONLINE, 2022, 55 (37): : 420 - 425
  • [30] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709