Robust estimate for count time series using GLARMA models: An application to environmental and epidemiological data

被引:0
|
作者
Camara, Ana Julia Alves [1 ]
Reisen, Valderio Anselmo [2 ]
Bondon, Pascal [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Espirito Santo, PPGEA, Av Fernando Ferrari 514, BR-29075910 Vitoria, ES, Brazil
[3] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
关键词
Count time series; GLARMA model; M-estimators; Additive outliers; Respiratory diseases; PARTICULATE AIR-POLLUTION; REGRESSION-MODELS; LINEAR-MODELS; HEALTH; OUTLIERS;
D O I
10.1016/j.apm.2024.115658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Generalized Linear Autoregressive Moving Average (GLARMA) model has been used in epidemiological studies to evaluate the impact of air pollutants on health. Due to the nature of the data, a robust approach for the GLARMA model is proposed here based on the robustification of the quasi-likelihood function. Outlying observations are bounded separately by weight functions on covariates and the Huber loss function on the response variable. Some technical issues related to the robust approach are discussed and a Monte Carlo study revealed that the robust approach is more reliable than the classic one for contaminated data with additive outliers. The real data analysis investigates the impact of PM10 10 in the number of deaths by respiratory diseases in Vit & oacute;ria, Brazil.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Automatic outlier detection for time series: an application to sensor data
    Basu, Sabyasachi
    Meckesheimer, Martin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 11 (02) : 137 - 154
  • [42] Detection of outliers in the financial time series using ARIMA models
    Agnieszka, Duraj
    Magdalena, Ludwicka
    2018 APPLICATIONS OF ELECTROMAGNETICS IN MODERN TECHNIQUES AND MEDICINE (PTZE), 2018, : 49 - 52
  • [43] Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data
    Lee, Kyu Ha
    Coull, Brent A.
    Moscicki, Anna-Barbara
    Paster, Bruce J.
    Starr, Jacqueline R.
    BIOSTATISTICS, 2020, 21 (03) : 499 - 517
  • [44] Application of the 2018 Periodontal Status Classification to Epidemiological Survey Data (ACES) Framework to Estimate the Periodontitis Prevalence in the United States
    Tay, John Rong Hao
    Holtfreter, Birte
    Baumeister, Sebastian-Edgar
    Peres, Marco A.
    Nascimento, Gustavo G.
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2025,
  • [45] Time series analysis of BOD data using the Gibbs sampler
    Tiwari, RC
    Yang, YH
    Zalkikar, JN
    ENVIRONMETRICS, 1996, 7 (06) : 567 - 578
  • [46] Forecasting daily meteorological time series using ARIMA and regression models
    Murat, Malgorzata
    Malinowska, Iwona
    Gos, Magdalena
    Krzyszczak, Jaromir
    INTERNATIONAL AGROPHYSICS, 2018, 32 (02) : 253 - 264
  • [47] Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta
    Sarnat, Stefanie Ebelt
    Sarnat, Jeremy A.
    Mulholland, James
    Isakov, Vlad
    Oezkaynak, Halul
    Chang, Howard H.
    Klein, Mitchel
    Tolbert, Paige E.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2013, 23 (06) : 593 - 605
  • [48] Comparison of estimation methods and sample size calculation for parameter-driven interrupted time series models with count outcomes
    Ye, Shangyuan
    Wang, Rui
    Zhang, Bo
    HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY, 2022, 22 (03) : 349 - 396
  • [49] Physician and nurse supply in Serbia using time-series data
    Santric-Milicevic, Milena
    Vasic, Vladimir
    Marinkovic, Jelena
    HUMAN RESOURCES FOR HEALTH, 2013, 11
  • [50] Mapping the uninsured using secondary data: an environmental justice application in Dallas
    Sara E. Grineski
    Yolanda J. McDonald
    Population and Environment, 2011, 32 : 376 - 387