Spatial Interpolation of Seasonal Precipitations Using Rain Gauge Data and Convection-Permitting Regional Climate Model Simulations in a Complex Topographical Region
被引:0
|
作者:
Dura, Valentin
论文数: 0引用数: 0
h-index: 0
机构:
EDF DTG, Grenoble, France
Univ Grenoble Alpes, Inst Engn & Management, CNRS, INRAE,IRD,IGE, Grenoble, FranceEDF DTG, Grenoble, France
complex topographical region;
convection-permitting regional climate model;
geographically weighted regression;
kriging with external drift;
random forest;
robustness;
seasonal precipitation;
spatial interpolation;
RESOLUTION MONTHLY PRECIPITATION;
MASS BALANCES;
LAPSE RATES;
RADAR;
REGRESSION;
PERFORMANCE;
COMBINATION;
UNCERTAINTY;
TEMPERATURE;
VARIABILITY;
D O I:
10.1002/joc.8662
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
In mountainous areas, accurately estimating the long-term climatology of seasonal precipitations is challenging due to the lack of high-altitude rain gauges and the complexity of the topography. This study addresses these challenges by interpolating seasonal precipitation data from 3189 rain gauges across France over the 1982-2018 period, using geographical coordinates, and altitude. In this study, an additional predictor is provided from simulations of a Convection-Permitting Regional Climate Model (CP-RCM). The simulations are averaged to obtain seasonal precipitation climatology, which helps capture the relationship between topography and long-term seasonal precipitation. Geostatistical and machine learning models are evaluated within a cross-validation framework to determine the most appropriate approach to generate seasonal precipitation reference fields. Results indicate that the best model uses a machine learning approach to interpolate the ratio between long-term seasonal precipitation from observations and CP-RCM simulations. This method successfully reproduces both the mean and variance of observed data, and slightly outperforms the best geostatistical model. Moreover, incorporating the CP-RCM outputs as an explanatory variable significantly improves interpolation accuracy and altitude extrapolation, especially when the rain gauge density is low. These results imply that the commonly used altitude-precipitation relationship may be insufficient to derive seasonal precipitation fields. The CP-RCM simulations, increasingly available worldwide, present an opportunity for improving precipitation interpolation, especially in sparse and complex topographical regions.
机构:
Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Steinhoff, Daniel F.
Monaghan, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
Univ Colorado, Boulder, CO USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Monaghan, Andrew
Yates, David
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Yates, David
Liu, Changhai
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Liu, Changhai
Rasmussen, Roy
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Rasmussen, Roy
Taraphdar, Sourav
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Ctr Prototype Climate Modeling, Abu Dhabi, U Arab EmiratesNanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
Taraphdar, Sourav
Pauluis, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Ctr Prototype Climate Modeling, Abu Dhabi, U Arab Emirates
NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USANanjing Univ Informat Sci & Technol, Precis Reg Earth Modeling & Informat Ctr, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China