Additive-feature-attribution methods: A review on explainable artificial intelligence for fluid dynamics and heat transfer

被引:6
作者
Cremades, Andres [1 ]
Hoyas, Sergio [2 ]
Vinuesa, Ricardo [1 ]
机构
[1] KTH Royal Inst Technol, FLOW, Engn Mech, SE-10044 Stockholm, Sweden
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
Fluid mechanics; SHAP; Explainable artificial intelligence; Deep learning; Shapley values; DIRECT NUMERICAL-SIMULATION; SOLAR AIR HEATER; NEURAL-NETWORK; NOISE-REDUCTION; CHANNEL FLOW; MODEL; TURBULENCE; CLASSIFICATION; PERFORMANCE; PERSPECTIVES;
D O I
10.1016/j.ijheatfluidflow.2024.109662
中图分类号
O414.1 [热力学];
学科分类号
摘要
The use of data-driven methods in fluid mechanics has surged dramatically in recent years due to their capacity to adapt to the complex and multi-scale nature of turbulent flows, as well as to detect patterns in large-scale simulations or experimental tests. In order to interpret the relationships generated in the models during the training process, numerical attributions need to be assigned to the input features. One important example are the additive-feature-attribution methods. These explainability methods link the input features with the model prediction, providing an interpretation based on a linear formulation of the models. The Shapley additive explanations (SHAP values) are formulated as the only possible interpretation that offers a unique solution for understanding the model. In this manuscript, the additive-feature-attribution methods are presented, showing four common implementations in the literature: kernel SHAP, tree SHAP, gradient SHAP, and deep SHAP. Then, the main applications of the additive-feature-attribution methods are introduced, dividing them into three main groups: turbulence modeling, fluid-mechanics fundamentals, and applied problems in fluid dynamics and heat transfer. This review shows that explainability techniques, and in particular additive- feature-attribution methods, are crucial for implementing interpretable and physics-compliant deep-learning models in the fluid-mechanics field.
引用
收藏
页数:19
相关论文
共 218 条
[1]   Explaining individual predictions when features are dependent: More accurate approximations to Shapley values [J].
Aas, Kjersti ;
Jullum, Martin ;
Loland, Anders .
ARTIFICIAL INTELLIGENCE, 2021, 298
[2]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[3]  
Abom M., 2014, Technical Report, SAE Technical Paper.
[4]   Machine Learning in High Energy Physics Community White Paper [J].
Albertsson, Kim ;
Altoe, Piero ;
Anderson, Dustin ;
Andrews, Michael ;
Espinosa, Juan Pedro Araque ;
Aurisano, Adam ;
Basara, Laurent ;
Bevan, Adrian ;
Bhimji, Wahid ;
Bonacorsi, Daniele ;
Calafiura, Paolo ;
Campanelli, Mario ;
Capps, Louis ;
Carminati, Federico ;
Carrazza, Stefano ;
Childers, Taylor ;
Coniavitis, Elias ;
Cranmer, Kyle ;
David, Claire ;
Davis, Douglas ;
Duarte, Javier ;
Erdmann, Martin ;
Eschle, Jonas ;
Farbin, Amir ;
Feickert, Matthew ;
Castro, Nuno Filipe ;
Fitzpatrick, Conor ;
Floris, Michele ;
Forti, Alessandra ;
Garra-Tico, Jordi ;
Gemmler, Jochen ;
Girone, Maria ;
Glaysher, Paul ;
Gleyzer, Sergei ;
Gligorov, Vladimir ;
Golling, Tobias ;
Graw, Jonas ;
Gray, Lindsey ;
Greenwood, Dick ;
Hacker, Thomas ;
Harvey, John ;
Hegner, Benedikt ;
Heinrich, Lukas ;
Hooberman, Ben ;
Junggeburth, Johannes ;
Kagan, Michael ;
Kane, Meghan ;
Kanishchev, Konstantin ;
Karpinski, Przemyslaw ;
Kassabov, Zahari .
18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
[5]   DNS of thermal channel flow up to Reτ=2000 for medium to low Prandtl numbers [J].
Alcantara-Avila, F. ;
Hoyas, S. ;
Perez-Quiles, M. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :349-361
[6]   Direct numerical simulation of thermal channel flow for Reτ=5000 and Pr=0.71 [J].
Alcantara-Avila, Francisco ;
Hoyas, Sergio ;
Jezabel Perez-Quiles, Maria .
JOURNAL OF FLUID MECHANICS, 2021, 916
[7]  
Ancona M, 2018, Arxiv, DOI arXiv:1711.06104
[8]  
[Anonymous], Chin. J. Aeronaut., V36, P16
[9]   Review and evaluation of wake loss models for wind energy applications [J].
Archer, Cristina L. ;
Vasel-Be-Hagh, Ahmadreza ;
Yan, Chi ;
Wu, Sicheng ;
Pan, Yang ;
Brodie, Joseph F. ;
Maguire, A. Eoghan .
APPLIED ENERGY, 2018, 226 :1187-1207
[10]   Interpreting and generalizing deep learning in physics-based problems with functional linear models [J].
Arzani, Amirhossein ;
Yuan, Lingxiao ;
Newell, Pania ;
Wang, Bei .
ENGINEERING WITH COMPUTERS, 2025, 41 (01) :135-157