Non-Fluorinated Cyclic Ether-Based Electrolyte with Quasi-Conjugate Effect for High-Performance Lithium Metal Batteries

被引:4
作者
Zhu, Xiao [1 ,2 ]
Chen, Jiawei [1 ,2 ]
Liu, Gaopan [1 ,2 ]
Mo, Yanbing [1 ,2 ]
Xie, Yihua [1 ,2 ]
Zhou, Kang [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Dong, Xiaoli [1 ,2 ]
机构
[1] Fudan Univ, Inst New Energy, iChEM Collaborat Innovat Ctr Chem Energy Mat, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Inst New Energy, iChEM Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Non-Fluorinated Cyclic Ether Solvent; Quasi-Conjugate Effect; Weak Solvation Ability; Lithium Metal Batteries; Wide Temperature Operation; CARBONATE;
D O I
10.1002/anie.202412859
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorinated ether-based electrolytes are commonly employed in lithium metal batteries (LMBs) to attenuate the coordination ability of ether solvents with Li+ and induce inorganic-rich interphase, whereas fluorination inevitably introduces exorbitant production expenses and environmental anxieties. Herein, a non-fluorinated molecular design strategy has been conceptualized by incorporating methoxy as an electron-donating group to generate a quasi-conjugate effect for tuning the affinity of Li+-solvent, thereby enabling the cyclic ether solvent 2-methoxy-1,3-dioxolane with weak solvation ability and exceptional Li metal-compatibility. Accordingly, the optimized electrolyte exhibits anion-dominant solvation structure for inorganic-rich interphase and fulfills an impressive Li plating/stripping Coulombic efficiency of 99.6 %. As-fabricated Li||LiFePO4 full cells with limited Li (N/P=2.5) showcase a high capacity retention of 83 % after 150 cycles, indicating excellent cycling stability. Moreover, the full LMBs demonstrate exceptional tolerance towards a wide temperature range from -20 degrees C to 60 degrees C, displaying a remarkable capacity retention of 90 % after 110 cycles at -20 degrees C. Such a molecular design strategy offers a promising avenue for electrolyte engineering beyond fluorination in order to cultivate high-performance LMBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-crosslinking polymer electrolyte based on single-ion for high-performance lithium metal batteries
    Wang, Haihua
    Cao, Rui
    Hu, Guangyu
    Liu, Qiang
    Niu, Huizhu
    Wang, Jie
    Kang, Yong-Mook
    Chen, Chaoxian
    JOURNAL OF MEMBRANE SCIENCE, 2025, 718
  • [22] Spontaneous aggregation in ether-functionalized ionic liquid-based non-flammable electrolyte for high-performance lithium metal battery
    Li, Xuan
    Xu, Lin
    Shen, Gengzhe
    Liu, Lingwen
    Xiao, Tiejun
    Lyu, Jingmei
    Zhan, Shijing
    Chen, Zhengjian
    Shen, Hujun
    Sun, Zhipeng
    JOURNAL OF POWER SOURCES, 2024, 624
  • [23] In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries
    Sun, Shipeng
    Yu, Jiangtao
    Ma, Xinyu
    Fang, Pengda
    Yang, Mingchen
    Yang, Jinhua
    Wu, Mingzhu
    Hu, Yin
    Yan, Feng
    SMALL, 2024, 20 (43)
  • [24] Non-flammable long chain phosphate ester based electrolyte via competitive solventized structures for high-performance lithium metal batteries
    Liao, Li
    Han, Zhiqiang
    Feng, Xuanjie
    Luo, Pan
    Song, Jialin
    Shen, Yin
    Luo, Xiaoshuang
    Li, Xinpeng
    Wen, Xuanzhong
    Yu, Bo
    Chen, Junchen
    Guo, Bingshu
    Wang, Mingshan
    Huang, Yun
    Zhang, Hongmei
    Yin, Mengmeng
    Liu, Jiangtao
    Lin, Yuanhua
    Li, Xing
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 156 - 165
  • [25] An In Situ Prepared Comb-like Polycaprolactone-Based Gel Electrolyte for High-Performance Lithium Metal Batteries
    Fan, Yange
    Wang, Huifeng
    Chen, Shipeng
    Hou, Yimin
    Wang, Shujiang
    MATERIALS, 2023, 16 (05)
  • [26] Locally Fluorinated Electrolyte Medium Layer for High-Performance Anode-Free Li-Metal Batteries
    Ye, Xue
    Wu, Jing
    Liang, Jianneng
    Sun, Yipeng
    Ren, Xiangzhong
    Ouyang, Xiaoping
    Wu, Dazhuan
    Li, Yongliang
    Zhang, Lei
    Hu, Jiangtao
    Zhang, Qianling
    Liu, Jianhong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (48) : 53788 - 53797
  • [27] Regulating the non-effective carriers transport for high-performance lithium metal batteries
    Wang, Simeng
    Yu, Youchun
    Fu, Shaotong
    Li, Hongtao
    Huang, Jiajia
    JOURNAL OF ENERGY CHEMISTRY, 2024, 92 : 132 - 141
  • [28] A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries
    Wang, Qinglei
    Cui, Zili
    Zhou, Qian
    Shangguan, Xuehui
    Du, Xiaofan
    Dong, Shanmu
    Qiao, Lixin
    Huang, Suqi
    Liu, Xiaochen
    Tang, Kun
    Zhou, Xinhong
    Cui, Guanglei
    ENERGY STORAGE MATERIALS, 2020, 25 : 756 - 763
  • [29] Trace Dual-Salt Electrolyte Additive Enabling a LiF-Rich Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries
    Xia, Yingchun
    Hou, Wenhui
    Zhou, Pan
    Ou, Yu
    Cheng, Guangyu
    Guo, Chong
    Liu, Fengxiang
    Zhang, Weili
    Yan, Shuaishuai
    Lu, Yang
    Zeng, Yunxiong
    Liu, Kai
    NANO LETTERS, 2024, 24 (41) : 12791 - 12798
  • [30] PVDF/lithiated sulfonated poly (ether ether ketone) blend coated PE separators for high-performance lithium metal batteries
    Wang, Xuyang
    Wen, Yingfeng
    Wang, Yun
    Chen, Yi
    Yang, Liwen
    Guo, Chen
    Nie, Hui
    Zhou, Xingping
    Xie, Xiaolin
    JOURNAL OF POWER SOURCES, 2024, 615