Energy Conservation for the Compressible Euler Equations and Elastodynamics

被引:0
|
作者
Ye, Yulin [1 ]
Wang, Yanqing [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Ctr Appl Math Henan Prov, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Euler equations; Elastodynamics; Onsager's conjecture; Energy conservation; Vacuum; ONSAGERS CONJECTURE; WEAK SOLUTIONS;
D O I
10.1007/s00021-024-00913-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Onsager's conjecture for the compressible Euler equations and elastodynamics in a torus or a bounded domain. Some energy conservation criteria in Onsager's critical spaces (B) under bar (alpha)(p,VMO) and Besov spaces B-p,infinity(alpha) for weak solutions in these systems are established, which extend the known corresponding results. A novel ingredient is the utilization of a test function in one single step rather than two steps in the case of incompressible models to capture the affect of the boundary.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Cartesian Grid Method for the Compressible Euler Equations
    Farooq, M. Asif
    Muller, B.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 449 - 456
  • [42] On the compressible Euler dynamics equations in transonic flow
    Su, Y. -C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 156 - 172
  • [43] Energy conservation for the weak solutions to the incompressible inhomogeneous Euler–Korteweg equations
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [44] Three results on the energy conservation for the 3D Euler equations
    Luigi C. Berselli
    Stefanos Georgiadis
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [45] Singularities of solutions to compressible Euler equations with damping
    Dong, Jianwei
    Xue, Hongxia
    Lou, Guangpu
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2019, 76 : 272 - 275
  • [46] A VARIATIONAL TIME DISCRETIZATION FOR COMPRESSIBLE EULER EQUATIONS
    Cavalletti, Fabio
    Sedjro, Marc
    Westdickenberg, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 5083 - 5155
  • [47] Solution semiflow to the compressible Euler equations with damping
    Tan, Zhong
    Wu, Zhonger
    Xie, Minghong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)
  • [48] Three results on the energy conservation for the 3D Euler equations
    Berselli, Luigi C.
    Georgiadis, Stefanos
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03):
  • [49] Energy conservation of weak solutions for the incompressible Euler equations via vorticity
    Liu, Jitao
    Wang, Yanqing
    Ye, Yulin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 254 - 279
  • [50] Energy conservation for the weak solutions to the 3D compressible nematic liquid crystal flow
    Tan, Zhong
    Li, Xinliang
    Yang, Hui
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 851 - 864