Energy Conservation for the Compressible Euler Equations and Elastodynamics

被引:0
|
作者
Ye, Yulin [1 ]
Wang, Yanqing [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Ctr Appl Math Henan Prov, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Euler equations; Elastodynamics; Onsager's conjecture; Energy conservation; Vacuum; ONSAGERS CONJECTURE; WEAK SOLUTIONS;
D O I
10.1007/s00021-024-00913-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Onsager's conjecture for the compressible Euler equations and elastodynamics in a torus or a bounded domain. Some energy conservation criteria in Onsager's critical spaces (B) under bar (alpha)(p,VMO) and Besov spaces B-p,infinity(alpha) for weak solutions in these systems are established, which extend the known corresponding results. A novel ingredient is the utilization of a test function in one single step rather than two steps in the case of incompressible models to capture the affect of the boundary.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions
    Wang, Tingsheng
    Zhao, Xinhua
    Chen, Yingshan
    Zhang, Mei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [12] Onsager's energy conservation of solutions for density-dependent Euler equations in Td
    Wu, Xinglong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 233
  • [13] ON THE HELICITY CONSERVATION FOR THE INCOMPRESSIBLE EULER EQUATIONS
    De Rosa, Luigi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (07) : 2969 - 2979
  • [14] Onsager's Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains
    Quoc-Hung Nguyen
    Phuoc-Tai Nguyen
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (01) : 207 - 213
  • [15] Energy conservation for the weak solutions to the incompressible inhomogeneous Euler-Korteweg equations
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [16] Onsager’s Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains
    Quoc-Hung Nguyen
    Phuoc-Tai Nguyen
    Journal of Nonlinear Science, 2019, 29 : 207 - 213
  • [17] Conservation of energy for the Euler-Korteweg equations
    Debiec, Tomasz
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Tzavaras, Athanasios
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
  • [18] Coupling of Compressible Euler Equations
    Herty, Michael
    Mueller, Siegfried
    Sikstel, Aleksey
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (04) : 769 - 792
  • [19] SINGULARITIES OF SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS WITH VACUUM
    Lei, Zhen
    Du, Yi
    Zhang, Qingtian
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 55 - 64
  • [20] Coupling of Compressible Euler Equations
    Michael Herty
    Siegfried Müller
    Aleksey Sikstel
    Vietnam Journal of Mathematics, 2019, 47 : 769 - 792