Energy Conservation for the Compressible Euler Equations and Elastodynamics

被引:0
|
作者
Ye, Yulin [1 ]
Wang, Yanqing [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Ctr Appl Math Henan Prov, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Euler equations; Elastodynamics; Onsager's conjecture; Energy conservation; Vacuum; ONSAGERS CONJECTURE; WEAK SOLUTIONS;
D O I
10.1007/s00021-024-00913-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Onsager's conjecture for the compressible Euler equations and elastodynamics in a torus or a bounded domain. Some energy conservation criteria in Onsager's critical spaces (B) under bar (alpha)(p,VMO) and Besov spaces B-p,infinity(alpha) for weak solutions in these systems are established, which extend the known corresponding results. A novel ingredient is the utilization of a test function in one single step rather than two steps in the case of incompressible models to capture the affect of the boundary.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] ENERGY CONSERVATION FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS WITH VACUUM
    Akramov, Ibrokhimbek
    Debiec, Tomasz
    Skipper, Jack
    Wiedemann, Emil
    ANALYSIS & PDE, 2020, 13 (03): : 789 - 811
  • [2] Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient
    Ye, Yulin
    Guo, Peixian
    Wang, Yanqing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [3] The role of density in the energy conservation for the isentropic compressible Euler equations
    Wang, Yanqing
    Ye, Yulin
    Yu, Huan
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (06)
  • [4] Energy conservation for inhomogeneous incompressible and compressible Euler equations
    Nguyen, Quoc-Hung
    Nguyen, Phuoc-Tai
    Tang, Bao Quoc
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7171 - 7210
  • [5] Regularity and Energy Conservation for the Compressible Euler Equations
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1375 - 1395
  • [6] Analytical validation of the helicity conservation for the compressible Euler equations
    Ye, Yulin
    Wei, Wei
    Wang, Yanqing
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)
  • [7] On the Energy and Helicity Conservation of the Incompressible Euler Equations
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (04)
  • [8] SUFFICIENT CONDITIONS FOR LOCAL ENERGY CONSERVATION FOR THE COMPRESSIBLE EULER SYSTEM
    Chomienia, Lukasz
    COLLOQUIUM MATHEMATICUM, 2022, 168 (02) : 171 - 197
  • [9] Energy conservation for the compressible ideal Hall-MHD equations
    Zhou, Yanping
    Deng, Xuemei
    Bie, Qunyi
    Kang, Lingping
    AIMS MATHEMATICS, 2022, 7 (09): : 17150 - 17165
  • [10] Regularity criterion on the energy conservation for the compressible Navier-Stokes equations
    Liang, Zhilei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (06) : 1954 - 1971