Nanorobotic strategy for nondestructive mechanical characterization of carbon nanotubes

被引:8
作者
Eichhorn V. [1 ]
Bartenwerfer M. [1 ]
Fatikow S. [1 ]
机构
[1] Division Microrobotics and Control Engineering, University of Oldenburg
关键词
Carbon nanotubes; Mechanical characterization; Nanorobotics; Young's modulus;
D O I
10.2174/1876402911002010032
中图分类号
学科分类号
摘要
The characterization of individual nanoscale objects such as carbon nanotubes (CNTs) is one of the main challenges in material science and nanotechnology. In this paper, we present a nanorobotic strategy allowing the nondestructive mechanical characterization of individual CNTs. A nanorobotic setup is developed to perform elastic deformations of multiwalled carbon nanotubes (MWCNTs). Characteristic force/displacement curves are measured and used to calculate the Young's modulus. Transmission electron microscope (TEM) images of the given CNTs show an additional conical layer of amorphous carbon enclosing the real multiwalled structure. Thus, different theoretical models are examined aiming to find the proper mechanical description of the analyzed CNTs. The experimental results show a significant influence of the outer carbon layer on the whole mechanical behavior of the MWCNTs. © 2010 Bentham Science Publishers Ltd.
引用
收藏
页码:32 / 37
页数:5
相关论文
共 28 条
  • [1] Iijima S., Helical microtubules of graphitic carbon, Nature, 354, pp. 56-58, (1991)
  • [2] Xu Z., Wang L., Zheng Q., Enhanced mechanical properties ofprestressed multi-walled carbon nanotubes, Small, 4, 6, pp. 733-737, (2008)
  • [3] Mahar B., Laslau C., Yip R., Sun Y., Development of carbonnanotube-based sensors - a review, IEEE Sens. J, 7, 2, pp. 266-284, (2007)
  • [4] Sinha N., Ma J., Yeow J.T.W., Carbon nanotube-based sensors, J. Nanosci. Nanotechnol, 6, pp. 573-590, (2006)
  • [5] Robertson J., Carbon Nanotube Field Emission Devices, pp. 291-309, (2008)
  • [6] Eichhorn V., Carlson K., Nanorobotic Manipulation Setup For Pick-and-Place Handlingand Nondestructive Characterization of Carbon Nanotubes, pp. 291-296, (2007)
  • [7] Sardan O., Eichhorn V., Petersen D., Fatikow S., Sigmund O., Boggild P., Rapid prototyping of nanotube-based devices using to-pology-optimized microgrippers, Nanotechnology, 19, (2008)
  • [8] Awano Y., Sato S., Kondo D., Ohfuti M., Kawabata A., Carbon nanotube via interconnect technologies:Size-classified catalyst nanoparticles and low-resistance ohmic con-tact formation, Phys. Status Solidi (a), 203, 14, pp. 3611-3616, (2006)
  • [9] Li C., Chou T.-W., Atomistic modeling of carbon nanotube-basedmechanical sensors, J. Intell. Mater. Syst. Struc, 17, 3, pp. 247-254, (2006)
  • [10] Ke C.-H., Pugno N., Peng B., Espinosa H.D., Experiments andmodeling of carbon nanotube-based nems devices, J. Mech. Phys.Solids, 53, 6, pp. 1314-1333, (2005)