Microenvironment-responsive Bletilla polysaccharide hydrogel with photothermal antibacterial and macrophage polarization-regulating properties for diabetic wound healing

被引:0
|
作者
Hu, Zhengbo [1 ]
Zhao, Kai [1 ]
Rao, Xin [1 ]
Chen, Xingcan [1 ]
Niu, Yujing [1 ]
Zhang, Qiantao [1 ]
Zhou, Mingyuan [1 ]
Chen, Yuchi [1 ]
Zhou, Fangmei [1 ]
Yu, Jie [2 ]
Ding, Zhishan [1 ]
Zhu, Bingqi [1 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Med Technol & Informat Engn, Hangzhou 310053, Zhejiang, Peoples R China
[2] Puer Kunhong Biotechnol Co Ltd, Puer 665000, Yunnan, Peoples R China
关键词
Diabetic wound; Bletilla striata polysaccharide; Photothermal; Hydrogel; Microenvironmental responsive;
D O I
10.1016/j.ijbiomac.2024.137819
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The healing of diabetic wounds (DW) is challenging due to the complex microenvironment, manifesting severe bacterial infections, persistent inflammation, and excessive oxidative stress. Therefore, overcoming these impediments to restore the wound microenvironment to a normal state is critical points and challenges in the development of effective DW dressings. Herein, a B/TF hydrogel was developed in our study using Bletilla striata polysaccharide (BSP), borax, and the tannic acid/ferric iron (TA/Fe3+) complex. The crosslinking of the hydrogel constructed by dynamic borate bonds not only impart remarkable physical properties to the hydrogel, but also exhibited responsive release of BSP and TA/Fe3+ complex to pH and glucose levels. Incorporating the TA/Fe3+ complex provided notable near-infrared (NIR) photothermal properties to the hydrogel, thereby demonstrating significant photothermal antibacterial activity and antioxidant capability. Additionally, the B/TF hydrogel effectively regulated the transformation of macrophages from the pro-inflammatory M1 phenotype to the antiinflammatory M2 phenotype. Animal experiments have also effectively confirmed that the treatment with B/ TF hydrogel combined with NIR radiation promoted the regeneration of skin tissue in DW. In summary, the developed multifunctional B/TF hydrogel showed advantages and met clinical requirements for treating DW.
引用
收藏
页数:15
相关论文
共 36 条
  • [31] A lipoic acid supramolecular polymer-based hydrogel with self-regulating ROS, reduced blood sugar, and antibacterial ability for improved diabetic wound healing
    Wang, Ling
    Fan, Guojuan
    Zhu, Lijie
    Zhang, Yuzhong
    Wang, Xiaoxia
    Qin, Jiamin
    Lu, Keliang
    Hu, Jinxing
    Ma, Jinlong
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2024, 9 (02):
  • [32] A multifunctional hydrogel with mild photothermal antibacterial and antioxidant properties based on quercetin and dopamine-coated zinc oxide nanoparticles for healing bacteria-infected wound
    Liu, Yan
    Ma, Qinbin
    Tang, Lei
    Shen, Yiling
    Zhao, Huancai
    Liu, Xiaoxu
    Lin, Danqi
    Zhou, Guiyin
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [33] A Dioscorea opposita Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects
    Liu, Wei
    Lei, Lijing
    Ma, Fanyi
    Zhan, Mengke
    Zhu, Jinhua
    Khan, Md. Zaved H.
    Liu, Xiuhua
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2025, 11 (01): : 415 - 428
  • [34] Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway
    Wei Liu
    Muyu Yu
    Dong Xie
    Longqing Wang
    Cheng Ye
    Qi Zhu
    Fang Liu
    Lili Yang
    Stem Cell Research & Therapy, 11
  • [35] Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway
    Liu, Wei
    Yu, Muyu
    Xie, Dong
    Wang, Longqing
    Ye, Cheng
    Zhu, Qi
    Liu, Fang
    Yang, Lili
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [36] Nitric oxide-releasing multifunctional catechol-modified chitosan/oxidized dextran hydrogel with antibacterial, antioxidant, and pro-angiogenic properties for MRSA-infected diabetic wound healing
    Liu, Longhai
    Zheng, Jia
    Li, Shaohua
    Deng, Yuanyuan
    Zhao, Senfeng
    Tao, Na
    Chen, Wansong
    Li, Jianghua
    Liu, You-Nian
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 263