In-situ analysis of water transport properties through a reinforced composite membrane in polymer electrolyte membrane fuel cells

被引:1
|
作者
Kim, Jiwoong [1 ]
Kim, Sehyeon [1 ]
Woo, Seong-Yong [2 ]
Chun, Hyunsoo [1 ]
Sim, Jaebong [1 ]
Kang, Sanggyu [3 ]
Min, Kyoungdoug [1 ]
机构
[1] Seoul Natl Univ, Dept Mech Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Korea Inst Ind Technol KITECH, Clean Energy Transit Grp, 102 Jejudaehak Ro, Jeju 63243, Jeju Do, South Korea
[3] Seoul Natl Univ, Dept Naval Architecture & Ocean Engn, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
Water diffusion coefficient; Electro-osmotic drag; Ionic conductivity; New dual-mode sorption model; Expanded polytetrafluoroethylene; Reinforced composite membrane; ELECTROOSMOTIC DRAG COEFFICIENTS; DIFFUSION-COEFFICIENT; MODEL; CONDUCTIVITY; SORPTION; TORTUOSITY; VAPOR;
D O I
10.1016/j.cej.2024.158078
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a comprehensive in-situ analysis of water transport properties through an expanded polytetrafluoroethylene (ePTFE)-reinforced composite membrane, representing a notable advancement over previous studies that primarily focused on Nafion membranes. The membrane water content was measured using dynamic vapor sorption (DVS) isotherms, and the temperature dependence of sorption was investigated using a new dual- mode sorption (NDMS) model, which showed an excellent fit with an adjusted coefficient of determination ( R adj 2 ) greater than 0.96. By employing the hydrogen pumping mode and polymer electrolyte membrane fuel cells (PEMFC) mode, we established empirical correlations for the coefficients of water diffusion, electro-osmotic drag (EOD), and ionic conductivity as functions of water content and cell temperature. The correlation results exhibited a maximum relative error of less than 3.14 %. In addition, we isolated the water diffusion coefficients of the gas diffusion layer (GDL) and catalyst layer (CL) from the membrane to refine our analysis. This study enhances the understanding of water management in PEMFCs by establishing correlations for water diffusion, EOD coefficient, and ionic conductivity. These findings underscore the potential of reinforced composite membranes in advancing fuel cell technology by optimizing water transport, which is crucial for improving fuel cell performance and enabling more precise PEMFC modeling.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Experimental study on water transport in membrane humidifiers for polymer electrolyte membrane fuel cells
    Wolfenstetter, Florian
    Kreitmeir, Michael
    Schoenfeld, Ladislaus
    Klein, Harald
    Becker, Marc
    Rehfeldt, Sebastian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23381 - 23392
  • [2] Experimental Determination of Water Transport in Polymer Electrolyte Membrane Fuel Cells
    Yau, Tak Cheung
    Sauriol, Pierre
    Bi, Xiaotao T.
    Stumper, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (09) : B1310 - B1320
  • [3] Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells
    Lee, Daewoong
    Hwang, Byungchan
    Lim, Daehyun
    Chung, Hoi-Bum
    You, Seung-Eul
    Ku, Young-Mo
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (03): : 338 - 343
  • [4] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [5] Numerical Analysis of Water Transport Through the Membrane Electrolyte Assembly of a Polymer Exchange Membrane Fuel Cell
    Zhang, Xu
    Song, Datong
    Wang, Qianpu
    Huang, Cheng
    Liu, Zhong-Sheng
    Shah, A. A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2010, 7 (02): : 0210091 - 02100914
  • [6] Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells
    Zamel, Nada
    Li, Xianguo
    Becker, Juergen
    Wiegmann, Andreas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5466 - 5478
  • [7] Nonlinear Water Transport Through a Polymer Electrolyte Membrane Under Transient Operation of a Proton Exchange Membrane Fuel Cell
    Lee, Chanhee
    Choi, Yoora
    Kim, Younghyeon
    Yu, Sangseok
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (05) : 1183 - 1200
  • [8] Pore Network Analysis of Capillary Water Transport in Porous Transport Layers of Polymer Electrolyte Membrane Fuel Cells
    Kang, Jung Ho
    Lee, Seung Hun
    Nam, Jin Hyun
    Kim, Hyung Min
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2020, 44 (10) : 591 - 602
  • [9] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    AFINIDAD, 2011, 68 (554) : 246 - 258
  • [10] EFFECT OF MEMBRANE PROPERTIES ON DYNAMIC BEHAVIOR OF POLYMER ELECTROLYTE MEMBRANE FUEL CELLS
    Verma, Atul
    Pitchumani, Ranga
    PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,