Amphiphilic pH-responsive core-shell nanoparticles can increase the performances of cellulose-based drug delivery systems

被引:2
|
作者
Lacroce, Elisa [1 ]
Nunziata, Giuseppe [1 ]
Cianniello, Francesca [1 ]
Limiti, Emanuele [2 ,3 ]
Rainer, Alberto [4 ,5 ]
Vangosa, Francesco Briatico [1 ]
Sacchetti, Alessandro [1 ]
Sponchioni, Mattia [1 ]
Rossi, Filippo [1 ]
机构
[1] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Campus Biomed Roma, Dept Sci & Technol Sustainable Dev & One Hlth, Via Alvaro Portillo 21, I-00128 Rome, Italy
[3] CNR, Inst Nanotechnol NANOTEC, Via Monteroni, I-73100 Lecce, Italy
[4] Univ Campus Biomed Roma, Dept Engn, Via Alvaro Portillo 21, I-00128 Rome, Italy
[5] Fdn Policlin Univ Campus Biomed, Via Alvaro Portillo 200, I-00128 Rome, Italy
关键词
Colloids; Drug delivery; Nanoparticles; Polymers; pH-responsive; BLOCK-COPOLYMERS; NANOCOMPOSITE HYDROGELS; CONTROLLED-RELEASE; OPEN-LABEL; CHEMOTHERAPY; NIVOLUMAB; CANCER; 5-FLUOROURACIL; COMBINATION; MICELLES;
D O I
10.1016/j.ijbiomac.2024.137659
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymer and nanoparticles (NPs) together are able to form nanocomposite materials that combine the beneficial properties of the traditional single systems. In this work, we propose a stimuli-responsive nanocomposite system which combines pH-responsive NPs with cellulose. Ring opening polymerization (ROP) followed by two reversible addition-fragmentation chain transfer (RAFT) polymerization steps were performed to synthetize ((PHEMA-graft-LA12)-co-PMAA)-b-PDEGMA copolymer characterized by tailored molecular weights and low polydispersity values. Uniform NPs were obtained by nanoprecipitation of the so-obtained copolymer in water. Moreover, drug release studies (using rhodamine b, fluorescein isothiocyanate, pyrene and 5-fluorouracil) at different pHs demonstrated the pH-responsivity of NPs, revealing a significant improvement of hydrophobic molecules release at acidic conditions. In vitro tests verified the biocompatibility of NPs and the efficacy in decreasing cancer cell viability. Finally, NPs were loaded into hydroxypropylmethyl-cellulose-C12 matrix to obtain the final polymer-NPs composite system. The composite systems showed the ability to sustain the release of low steric hindrance drugs loaded with NPs and high steric hindrance ones loaded within the polymeric network. Overall, the proposed pH-responsive drug delivery system represents a co-delivery device which could be applied for localized treatment in different combined therapeutic program.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] pH-responsive molecular nanocarriers based on dendritic core-shell architectures
    Krämer, M
    Stumbé, JF
    Türk, H
    Krause, S
    Komp, A
    Delineau, L
    Prokhorova, S
    Kautz, H
    Haag, R
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (22) : 4252 - 4256
  • [22] Smart antimicrobial Pickering emulsion stabilized by pH-responsive cellulose-based nanoparticles
    Meng, Qing
    Xue, Zhou
    Chen, Shunli
    Wu, Min
    Lu, Peng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 233
  • [23] pH-Responsive Polymer Nanoparticles for Drug Delivery
    Deirram, Nayeleh
    Zhang, Changhe
    Kermaniyan, Sarah S.
    Johnston, Angus P. R.
    Such, Georgina K.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
  • [24] Magnetic alginate core-shell nanoparticles based on Schiff-base imine bonding for pH-responsive doxorubicin delivery system
    Mohammadzadeh, Ali
    Javanbakht, Siamak
    Mohammadi, Reza
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 697
  • [25] Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-Responsive core-shell nanoparticles
    Hu, Yuhua
    Litwin, Tamara
    Nagaraja, Arpun R.
    Kwong, Brandon
    Katz, Joshua
    Watson, Nicki
    Irvine, Darrell J.
    NANO LETTERS, 2007, 7 (10) : 3056 - 3064
  • [26] Designed Fabrication of Unique Eccentric Mesoporous Silica Nanocluster-Based Core-Shell Nanostructures for pH-Responsive Drug Delivery
    Chen, Lulu
    Li, Lu
    Zhang, Lingyu
    Xing, Shuangxi
    Wang, Tingting
    Wang, Y. Andrew
    Wang, Chungang
    Su, Zhongmin
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 7282 - 7290
  • [27] Delivery of soluble ethinylestradiol complex by pH-responsive core-shell composite hydrogel capsules
    Gong, Fengrong
    Jiang, Lihui
    Gao, Yanni
    Xu, Juan
    Wang, Ting
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (31)
  • [28] Stable and pH-responsive core-shell nanoparticles based on HEC and PMAA networks via template copolymerization
    Zhang, Y.
    Jin, Q.
    Chen, Y.
    Zhao, J.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (10) : 4451 - 4461
  • [29] Programmed pH-responsive core-shell nanoparticles for precisely targeted therapy of ulcerative colitis
    Zhang, Guangshuai
    Han, Wen
    Zhao, Peixu
    Wang, Zijun
    Li, Mo
    Sui, Xiaofan
    Liu, Yanhua
    Tian, Baocheng
    He, Zhonggui
    Fu, Qiang
    Nanoscale, 2022, 15 (04) : 1937 - 1946
  • [30] Programmed pH-responsive core-shell nanoparticles for precisely targeted therapy of ulcerative colitis
    Zhang, Guangshuai
    Han, Wen
    Zhao, Peixu
    Wang, Zijun
    Li, Mo
    Sui, Xiaofan
    Liu, Yanhua
    Tian, Baocheng
    He, Zhonggui
    Fu, Qiang
    NANOSCALE, 2023, 15 (04) : 1937 - 1946