Amphiphilic pH-responsive core-shell nanoparticles can increase the performances of cellulose-based drug delivery systems

被引:2
|
作者
Lacroce, Elisa [1 ]
Nunziata, Giuseppe [1 ]
Cianniello, Francesca [1 ]
Limiti, Emanuele [2 ,3 ]
Rainer, Alberto [4 ,5 ]
Vangosa, Francesco Briatico [1 ]
Sacchetti, Alessandro [1 ]
Sponchioni, Mattia [1 ]
Rossi, Filippo [1 ]
机构
[1] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Campus Biomed Roma, Dept Sci & Technol Sustainable Dev & One Hlth, Via Alvaro Portillo 21, I-00128 Rome, Italy
[3] CNR, Inst Nanotechnol NANOTEC, Via Monteroni, I-73100 Lecce, Italy
[4] Univ Campus Biomed Roma, Dept Engn, Via Alvaro Portillo 21, I-00128 Rome, Italy
[5] Fdn Policlin Univ Campus Biomed, Via Alvaro Portillo 200, I-00128 Rome, Italy
关键词
Colloids; Drug delivery; Nanoparticles; Polymers; pH-responsive; BLOCK-COPOLYMERS; NANOCOMPOSITE HYDROGELS; CONTROLLED-RELEASE; OPEN-LABEL; CHEMOTHERAPY; NIVOLUMAB; CANCER; 5-FLUOROURACIL; COMBINATION; MICELLES;
D O I
10.1016/j.ijbiomac.2024.137659
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymer and nanoparticles (NPs) together are able to form nanocomposite materials that combine the beneficial properties of the traditional single systems. In this work, we propose a stimuli-responsive nanocomposite system which combines pH-responsive NPs with cellulose. Ring opening polymerization (ROP) followed by two reversible addition-fragmentation chain transfer (RAFT) polymerization steps were performed to synthetize ((PHEMA-graft-LA12)-co-PMAA)-b-PDEGMA copolymer characterized by tailored molecular weights and low polydispersity values. Uniform NPs were obtained by nanoprecipitation of the so-obtained copolymer in water. Moreover, drug release studies (using rhodamine b, fluorescein isothiocyanate, pyrene and 5-fluorouracil) at different pHs demonstrated the pH-responsivity of NPs, revealing a significant improvement of hydrophobic molecules release at acidic conditions. In vitro tests verified the biocompatibility of NPs and the efficacy in decreasing cancer cell viability. Finally, NPs were loaded into hydroxypropylmethyl-cellulose-C12 matrix to obtain the final polymer-NPs composite system. The composite systems showed the ability to sustain the release of low steric hindrance drugs loaded with NPs and high steric hindrance ones loaded within the polymeric network. Overall, the proposed pH-responsive drug delivery system represents a co-delivery device which could be applied for localized treatment in different combined therapeutic program.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] pH-Responsive Polymer Core-Shell Nanospheres for Drug Delivery
    Wang, Hui
    Rempel, Garry L.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (20) : 4440 - 4450
  • [2] pH-Responsive Magnetic Core-Shell Nanocomposites for Drug Delivery
    Yang, Chunyu
    Guo, Wei
    Cui, Liru
    An, Na
    Zhang, Ting
    Lin, Huiming
    Qu, Fengyu
    LANGMUIR, 2014, 30 (32) : 9819 - 9827
  • [3] ZnO-DOX@ZIF-8 Core-Shell Nanoparticles for pH-Responsive Drug Delivery
    Zheng, Cunchuan
    Wang, Yang
    Phua, Soo Zeng Fiona
    Lim, Wei Qi
    Zhao, Yanli
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (10): : 2223 - 2229
  • [4] A pH-responsive amphiphilic chitosan-pyranine core-shell nanoparticle for controlled drug delivery, imaging and intracellular pH measurement
    Chou, Hao-Syun
    Hsiao, Meng-Hsuan
    Hung, Wei-Yang
    Yen, Tin-Yo
    Lin, Hui-Yi
    Liu, Dean-Mo
    JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (38) : 6580 - 6589
  • [5] Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery
    Chen, Nusheng
    Wang, Hui
    Ling, Chen
    Vermerris, Wilfred
    Wang, Bin
    Tong, Zhaohui
    CARBOHYDRATE POLYMERS, 2019, 225
  • [6] Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery
    Guo, Miao
    Yan, Yu
    Zhang, Hongkai
    Yan, Husheng
    Cao, Youjia
    Liu, Keliang
    Wan, Shourong
    Huang, Junsheng
    Yue, Wei
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (42) : 5104 - 5112
  • [7] Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application
    Huang, W. F.
    Tsui, C. P.
    Tang, C. Y.
    Yang, M.
    Gu, Linxia
    COMPOSITES PART B-ENGINEERING, 2017, 121 : 83 - 91
  • [8] pH-Responsive dendritic core-shell architectures as amphiphilic nanocarriers for polar drugs
    Xu, Shangjie
    Kraemer, Michael
    Haag, Rainer
    JOURNAL OF DRUG TARGETING, 2006, 14 (06) : 367 - 374
  • [9] Preparation of pH-Responsive Polymer Core-Shell Nanospheres for Delivery of Hydrophobic Antineoplastic Drug Ellipticine
    Wang, Hui
    Yang, Lijuan
    Rempel, Garry L.
    MACROMOLECULAR BIOSCIENCE, 2014, 14 (02) : 166 - 172
  • [10] pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery
    Soppimath, KS
    Tan, DCW
    Yang, YY
    ADVANCED MATERIALS, 2005, 17 (03) : 318 - +