Coherent WDM-PON and free space optical (FSO) system for front-haul in next-generation cellular networks

被引:1
作者
AlQahtani, Dokhyl [1 ]
El-Nahal, Fady [2 ,3 ]
机构
[1] Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj
[2] College of Engineering, Qatar University, Doha
[3] Department of Electrical Engineering, Islamic University of Gaza, Gaza
来源
Optik | 2025年 / 323卷
关键词
Centralized Radio Access Network (C-RAN); Free Space Optics (FSO); Fronthaul networks; Passive Optical Network (PON); Reflective semiconductor optical amplifiers (RSOAs);
D O I
10.1016/j.ijleo.2024.172212
中图分类号
学科分类号
摘要
The demand for optical networks that offer low latency and high capacity is increasing with the rise of next-generation cellular systems. Centralized Radio Access Network (C-RAN) architecture provides a cost-effective approach to mobile network deployment. To enhance flexibility and minimize fronthaul network implementation expenses, we propose a bidirectional fronthaul C-RAN configuration that combines coherent Wavelength Division Multiplexing (WDM), passive optical networks (PONs), and free-space optical (FSO) communication. This system utilizes an efficient wavelength reuse technique employing reflective semiconductor optical amplifiers (RSOAs), which helps reduce costs and boost capacity, resulting in a high-throughput network. The setup achieves a downstream data rate of 125 Gbps using 16-quadrature amplitude modulation (16-QAM) and an upstream data rate of 10 Gbps using on-off keying (OOK). An FSO link was modeled using a Gamma–Gamma channel for optical signal transmission. The bit error rate (BER) results suggest that the fronthaul based on WDM-FSO-PON can reach 4 Tbps over a 2.5 km free-space link. © 2025 Elsevier GmbH
引用
收藏
相关论文
共 53 条
[41]  
El-Nahal F.I., A WDM-pon with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 gbit/s wavelength reused bidirectional reflective SOA, Optoelectron. Lett., 13, 1, pp. 67-69, (2017)
[42]  
Shbair W., Nahal F.E., Coherent passive optical network technology for 5G, 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering, PICECE, pp. 1-4, (2019)
[43]  
El-Nahal F., Xu T., AlQahtani D., Leeson M., A bidirectional wavelength division multiplexed (WDM) free space optical communication (FSO) system for deployment in data center networks (DCNs), Sensors, 22, 24, (2022)
[44]  
El-Nahal F., Xu T., AlQahtani D., Leeson M., A bidirectional WDM-PON free space optical (FSO) system for fronthaul 5 G C-RAN networks, IEEE Photonics J., 15, 1, pp. 1-10, (2023)
[45]  
Mvone R.E., Hannachi C., Hammou D., Moldovan E., Tatu S.O., Optimization of 16-QAM and 32-QAM constellations for mitigating impairments of phase noise in millimeter-wave receivers, IEEE Trans. Wireless Commun., 21, 6, pp. 3605-3616, (2022)
[46]  
Mirza J., Imtiaz W.A., Aljohani A.J., Atieh A., Ghafoor S., Design and analysis of a 32×5 gbps passive optical network employing FSO based protection at the distribution level, Alex. Eng. J., 59, 6, pp. 4621-4631, (2020)
[47]  
Wang Z., Zhong W.-D., Fu S., Lin C., Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique, IEEE Photonics J., 1, 6, pp. 277-285, (2009)
[48]  
Chien-Hung Y., Chi-Wai C., Utilization of reflective semiconductor optical amplifier (RSOA) for multiwavelength and wavelength-tunable fiber lasers, Fiber Laser, (2016)
[49]  
Zhan W., Zhou P., Zeng Y., Mukaikubo M., Tanemura T., Nakano Y., Optimization of modulation-canceling reflective semiconductor optical amplifier for colorless WDM transmitter applications, J. Lightwave Technol., 35, 2, pp. 274-279, (2017)
[50]  
Yang Y., Gao J., Zhang Y., Effects of fog-haze random media on the short-range optical wireless communications link, Optik, 138, pp. 8-14, (2017)